Abstract: A β encoder (Daubechise et al., 2006) is an analog-to-digital (AD) converter based on β transformation. This AD converter was developed to overcome the drawback that AD conversion methods based on binary expansion are not robust to threshold variations. The goal of a β encoder is to obtain coefficients of β-expansion of the input analog value \(x \) with \(\beta \in (1, 2) \). A scale-adjusted β expansion is given by

\[
x = (\beta - 1) \sum_{i=1}^{\infty} a_i \beta^{-i}.
\]

There are uncountably many β expansions for a single \(x \). Let \(\nu_i \) denotes the threshold at the \(i \)-th iteration, allowing for fluctuations. We can model the process of β encoder as follows: With initial value \(x_0 = x \),

\[
a_i = Q_{\nu_i}(\beta x_{i-1}), \quad x_i = \beta x_{i-1} - a_i, \quad i \geq 1
\]

where \(Q_{\nu}(x) = 0 \) if \(x < \nu \) and \(Q_{\nu}(x) = 1 \) if \(x \geq \nu \). If \(\nu_i \in [1, 1/(\beta - 1)] \) is satisfied, the \(n \)-bit approximation error \(|x - (\beta - 1) \sum_{i=1}^{n} a_i \beta^{-i}| \) decreases exponentially in \(n \). Hence β encoder is robust to the fluctuation of the threshold.

The β-ary to binary conversion (Matsumura and Jitsumatsu, 2016) is a post-processing for a β encoder, which generates the binary expansion \(b_i \)'s of \(x \) whose scale-adjusted β expansion is \(a_i \).

Our central concern is how many bits of β expansion are needed to correctly determine the first \(n \) binary expansions of \(x \).

In this talk we discuss i) the approximation error of the proposed method, ii) the effect of mismatches in β values, and iii) the extension to the case \(\beta > 2 \).