Adam Blažek, Edita Pelantová, Milena Svobodová Czech Technical University in Prague

Optimal Representations of Gaussian and Eisenstein Integers using digit sets closed under multiplication

Abstract: We discuss an enumeration problem in two number systems, each one given by base $\beta \in \mathbb{C}$ and by set of digits $\mathcal{D} \subset \mathbb{C}$.

- Case 1: β = i − 1 and D = {0, ±1, ±i},
 Case 2: β = ω − 1 and D = {0, ±1, ±ω, ±ω²}, where ω = exp(2πi/3).

The set $\left\{\sum_{k=0}^{N-1} d_k \beta^k : N \in \mathbb{N}, d_k \in \mathcal{D}\right\}$ equals the ring of Gaussian integers $\mathbb{Z}[i]$ in Case 1, and the ring of Eisenstein integers $\mathbb{Z}[\omega]$ in Case 2.

Efficiency of multiplication algorithms in the two systems is guaranteed by three properties:

- Digit set \mathcal{D} is closed under multiplication.
- Addition can be done by a *p*-local function, multiplication can be performed by on-line algorithms.
- In Case 1, any $x \in \mathbb{Z}[i]$ has the w-NAF representation (non-adjacent form) with w = 3, and this representation has the minimal Hamming weight among all representations of x. In Case 2, the same is true for any $x \in \mathbb{Z}[\omega]$ with w = 2.

We count the number f(x) of optimal representations of $x \in \mathbb{Z}[\beta]$, i.e., representations of x with the minimal Hamming weight. For any fixed $N \in \mathbb{N}$, we determine the maximal and the average value of f(x), where x belongs to $\mathcal{M}_N = \{x \in \mathbb{Z}[\beta] : \text{ length of } w\text{-NAF representation of } x \text{ is at most } N\}.$