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Sequences

A(n infinite) sequence over an alphabet A is a map σ : N → A

σ = σ(0)σ(1)σ(2)σ(3) · · ·

A sequence is ultimately periodic if there exist k , n such that
σ(i + k) = σ(i) for all i ≥ n

These are boring

What are the simplest sequences that are not ultimately periodic?
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Morphisms, morphic sequences

A morphism f : A → A+ can be extended to strings and to
sequences

If f (a) = au, u ̸= ϵ, then f has a unique fixed point starting in a:

f (f (a)) = f (au) = f (a)f (u) = auf (u)

f (f (f (a))) = f (auf (u)) = auf (u)f 2(u)

· · · · · ·

f ∞(a) = auf (u)f 2(u)f 3(u)f 4(u) · · ·

Such a sequence is called pure morphic

If τ : B → A (called a coding) and σ is pure morphic over B, then
τ(σ) is called morphic
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Example

The Thue-Morse sequence

t = 0110100110010110 · · ·

is defined by t = f ∞(0) for f (0) = 01, f (1) = 10

The Fibonacci sequence

fib = 0100101001001 · · ·

is defined by fib = f ∞(0) for f (0) = 01, f (1) = 0

These are pure morphic

For f (0) = 0, f (1) = 10, f (2) = 210, τ(0) = 0, τ(1) = τ(2) = 1
we obtain

τ(f ∞(2)) = 1101001031041051 · · ·

It is morphic; it is easily shown not to be pure morphic
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This talk

In this talk we will focus on three aspects of morphic sequences:

Equivalent characterizations of the class of morphic sequences
and the relation to numeration systems

Visualization by turtle graphics

How to prove that two representations give the same sequence
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The class of morphic sequences

The class of morphic sequences is closed under several operations,
like

adding or removing a string at the front,

applying morphisms,

take arithmetic subsequence like even

Just like the class of regular languages is closed under several
operations and has several equivalent characterizations, one may
expect that a similar robustness of the class of morphic sequences
gives rise to equivalent characterizations

We investigate some results in this direction, along the lines of
similar characterizations of automatic sequences, being morphic
sequences for which all f (b) have the same length
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Tree structure

The recursive calls in the definition of morphic sequence give rise
to a tree structure

For the Fibonacci sequence fib this starts in

0

1

0

0 1

0 1 0

0 1 0 0 1

a = 0

u = 1

f (u) = 0

f 2(u) = 01

f 3(u) = 010

f 4(u) = 01001

0

1

2

3 4

5 6 7

8 9 10 11 12

Hans Zantema Morphic sequences: characterization, visualization and equality



Tree structure

The recursive calls in the definition of morphic sequence give rise
to a tree structure

For the Fibonacci sequence fib this starts in

0

1

0

0 1

0 1 0

0 1 0 0 1

a = 0

u = 1

f (u) = 0

f 2(u) = 01

f 3(u) = 010

f 4(u) = 01001

0

1

2

3 4

5 6 7

8 9 10 11 12

Hans Zantema Morphic sequences: characterization, visualization and equality



Tree structure

The recursive calls in the definition of morphic sequence give rise
to a tree structure

For the Fibonacci sequence fib this starts in

0

1

0

0 1

0 1 0

0 1 0 0 1

a = 0

u = 1

f (u) = 0

f 2(u) = 01

f 3(u) = 010

f 4(u) = 01001

0

1

2

3 4

5 6 7

8 9 10 11 12

Hans Zantema Morphic sequences: characterization, visualization and equality



Every internal node labeled by a has |f (a)| children, so
Thue-Morse t gives a binary tree

Every such f gives rise to a numeration system: numbering the
nodes in a breadth-first way as we did gives rise to a bijection
between N and the set of finite paths in the tree

The tree is rational, that is, has only finitely many distinct
subtrees: one for every alphabet symbol

Sharing all equal subtrees gives rise to a finite representation, a
mix-DFAO

DFAO is DFA with output, that is, the symbol to be produced

Every node = state corresponds to a symbol a and has outgoing
arrows labeled by 0, 1, . . . ,m − 1 where m = |f (a)|

This mix-DFAO can be seen as a DFAO in which the transition
function δ is partial
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The alphabet is assumed to be of the shape {0, 1, . . . ,m − 1}

For fib the mix-DFAO reads

0 1
1

0

0

Theorem

A sequence is morphic if and only if it is represented by a
mix-DFAO
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Ignoring the output, such a mix-DFA gives rise to a numeration
system

Now we present such numeration systems in a much more general
setting along the lines of the books Formal Languages, Automata
and Numeration Systems by Michel Rigo

An abstract numeration system (ANS) is a regular language L over
the alphabet {0, 1, . . . ,m − 1}

It defines a representation function repL : N → L, being bijective
and monotone wrt the genealogical order on L, that is, first look at
the length, and then compare words of the same length
lexicographically

If L consists of the words not starting in 0 then this corresponds to
the normal m-ary representation
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For such an ANS L a sequence σ is called L-automatic if there
exists a partial DFAO such that

σ(i) = µ(δ(q0, repL(i)))

for all i ∈ N, where µ, δ, q0 are the output function, transition
function and initial state of the DFAO

Theorem

A sequence is morphic if and only if it is L-automatic for some
ANS L

Here L-automatic allows much more freedom than the mix-DFAO
representation we gave earlier

Both theorems are correct, in fact the proof that any morphic
sequence is L-automatic in Rigo’s book essentially uses the
mix-DFAO representation as we did in our proof
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mix-DFAO representation as we did in our proof
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The terminology mix-DFAO was introduced in the LATA2013
paper by Endrullis, Grabmayer and Hendriks

There it was used to define the mix-automatic sequences in which
the sequence defined by a mix-DFAO is different: to compute σ(i)
the sequence rep(i) is entered to the mix-DFAO in reverse order

Their main result is that the classes of morphic sequences and
mix-automatic sequences are incomparable
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One more characterization of morphic sequences

Numbering the nodes of a tree by natural numbers yields a parent
function P : N>0 → N

If the tree is rational, the corresponding function P is called a
rational tree function

For a sequence σ, a rational tree function P and a number n let
σ[n] be the subsequence of σ obtained by only keeping the
elements of σ on positions k for which Pm(k) = n for some m

Theorem

A sequence σ over Σ is morphic if and only if a rational tree
function P : N>0 → N exists such that the set

{σ[n] | n ∈ N}

of subsequences of σ is finite.
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Conclusions characterizations of morphic sequences

Automatic sequences have several equivalent
characterizations, based on automata (DFAO), morphic
sequences and finiteness of kernel

For morphic sequences we also gave a characterization by
automata, essentially by DFAOs for which the transition
function is partial

The characterization of automatic sequences by finiteness of
the kernel is essentially about finiteness of a class of
subsequences, we gave a similar characterization for morphic
sequences

Feeding number representations in reverse direction into
DFAO yields the same class of automatic sequences, for the
variant for morphic sequences this is not the case
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Turtle figures

One reason to consider morphic seqeunces is that they give rise to
amazing turtle figures

For every a ∈ A choose an angle α(a) ∈ R

Then a sequence σ over A has a turtle curve:

Start in (0, 0) and draw a segment of unit length in the direction
α(σ(0)), by which the current direction is α(σ(0))

Next for i = 1, 2, 3, . . . continue by adding α(σ(i)) to the current
direction and draw a segment in this direction

The turtle figure is defined to be the union of all resulting segments
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As a first example, consider f (0) = 0, f (1) = 10, f (2) = 210,
giving

f ∞(2) = 2101001031041051 · · ·

Choose α(0) = 0, α(1) = α(2) = 90◦

This gives rise to the following turtle figure
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For a fixed number n every pure morphic sequence f ∞(a) is
composed from f n(b), for b running over the alphabet

For instance, the Thue-Morse sequence

t = 0110100110010110 · · ·

defined by t = f ∞(0) for f (0) = 01, f (1) = 10 is composed from
f 3(0) = 01101001 and f 3(1) = 10010110

One proves that if 2n(α(0) + α(1)) is a multiple of 360◦ = 2π,
then both f n+2(0) and f n+2(1) give rise to turtle figures that end
where they started, both in position and angle

Hence in that case the turtle figure of the infinite sequence
t = f ∞(0) draws these two finite turtle figures over and over
again, so is finite

We give a few examples of resulting turtle figures of t where
2n(α(0) + α(1)) is a multiple of 360◦
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f (0) = 01, f (1) = 10, α(0) = π
8 , α(1) =

63π
64
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f (0) = 01, f (1) = 10, α(0) = π
8 , α(1) =

63π
64
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f (0) = 01, f (1) = 10, α(0) = 3π
16 , α(1) =

117π
128
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f (0) = 01, f (1) = 10, α(0) = 61π
64 , α(1) = 33π

1024
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f (0) = 01, f (1) = 10, α(0) = 61π
64 , α(1) = 33π

1024

Hans Zantema Morphic sequences: characterization, visualization and equality



More finite turtle figures

Over the alphabet {0, 1} for every f the sequence f ∞(0) is
composed from f n(0) and f n(1), for any fixed n

If the turtle figure of f n(0) ends in a rational angle different from
the initial angle, then the turtle figure of the periodic sequence
(f n(0))∞ is finite

If moreover the turtle figure of f n(1) ends in its initial position and
angle, then the turtle curve of the sequence f ∞(0), being
composed from f n(0) and f n(1) will be finite

We will give a few examples of this
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f (0) = 0101, f (1) = 11, α(0) = −132◦, α(1) = 333
4

◦
= 3π

16
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f (0) = 01, f (1) = 00, α(0) = 140◦, α(1) = −80◦
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Fractal turtle figures

Apart from all these finite turtle figures, also infinite turtle figures
are of interest

In particular fractal turtle figures, in its simplest form turtle figures
of which the set P of end points of all the (infinitely many) end
points of the segments have the following fractal property:

cP ⊆ P

for some magnifying factor c > 1, where the points in P are
considered to be vectors with respect to some origin

An immediate consequence of this definition is that every fractal
turtle figure is infinite
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Example

obtained as the turtle figure of f ∞(0) for f (0) = 001111,
f (1) = 10, α(0) = 0, α(1) = 90◦, giving a magnifying factor c = 2

Key idea: applying f causes scaling up factor c in turtle figure
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f (0) = 011111, f (1) = 00, α(0) = 45◦, α(1) = −90◦
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Sierpinsky triangle, obtained by f (0) = 00001, f (1) = 11,
α(0) = 120◦, α(1) = 0

Hans Zantema Morphic sequences: characterization, visualization and equality



Sierpinsky triangle, obtained by f (0) = 00001, f (1) = 11,
α(0) = 120◦, α(1) = 0
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More complicated criteria yield fractal turtle figures with rotation

f (0) = 0101111, f (1) = 110, α(0) = 90◦, α(1) = −90◦
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f (0) = 0101111, f (1) = 110, α(0) = 90◦, α(1) = −90◦

Hans Zantema Morphic sequences: characterization, visualization and equality



f (0) = 000110, f (1) = 100110, α(0) = 70◦, α(1) = −105◦
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f (0) = 000110, f (1) = 100110, α(0) = 70◦, α(1) = −105◦
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All these examples and underlying theory are presented in

This book is written for a wide audience, and apart from turtle
graphics of morphic sequences it contains a general mathematical
introduction to infinity, and many mathematical challenges
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The last topic in this presentation is on automatically proving
equality of morphic sequences (Z24)

Example:

It happens that fib is equal to ρ(g∞(0)) for g , ρ defined by

g(0) = 02, g(1) = 021, g(2) = 102, ρ(0) = ρ(1) = 0, ρ(2) = 1

How to prove this?

fib = f ∞(0) for f (0) = 01, f (1) = 0, also if f is replaced by f 2:

f (0) = 010, f (1) = 01

Claim to be proved: f ∞(0) = ρ(g∞(0))

Hans Zantema Morphic sequences: characterization, visualization and equality



The last topic in this presentation is on automatically proving
equality of morphic sequences (Z24)

Example:

It happens that fib is equal to ρ(g∞(0)) for g , ρ defined by

g(0) = 02, g(1) = 021, g(2) = 102, ρ(0) = ρ(1) = 0, ρ(2) = 1

How to prove this?

fib = f ∞(0) for f (0) = 01, f (1) = 0, also if f is replaced by f 2:

f (0) = 010, f (1) = 01

Claim to be proved: f ∞(0) = ρ(g∞(0))
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We will prove the following properties simultaneously by induction
on n:
(0) f n−1(01) = ρ(gn(0))
(1) f n−1(010) = ρ(gn(1))
(2) f n−1(001) = ρ(gn(2))

Then our claim follows from (0)

Basis n = 1 of induction:
f 0(01) = 01 = ρ(g(0))
f 0(010) = 010 = ρ(g(1))
f 0(001)) = 001 = ρ(g(2))

Hence basis of induction proved
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Induction step part (0):

f n(01)) = f n−1(f (01)) = f n−1(010 01)

= f n−1(01 001) = ρ(gn(02)) = ρ(gn+1(0))

using IH (0) and IH (2)

proving part (0)
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Induction step part (1):

f n(010) = f n−1(01001010) = ρ(gn(021)) = ρ(gn+1(1))

using IH (0) and IH (2) and IH (1)

Induction step part (2):

f n(001) = f n−1(01001001) = ρ(gn(102)) = ρ(gn+1(2))

using IH (1) and IH (0) and IH (2)

Induction step proved, hence claim proved
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You might think that I found this proof and typed it myself

That’s not the case: I wrote a prototype tool that searches for a
general pattern, and automatically generates the proof as we just
gave it

The general pattern is given by the following theorem in which the
alphabet for g is {0, 1, . . . , n}

Theorem

For i = 0, 1, . . . , n let wi be the prefix in front of the first
occurrence of i in g∞(0), and write ui = f ∞(0)|g(wi )|,|g(wi i)|
For i = 0, 1, . . . , n assume that τ(ui ) = ρ(g(i)) and
f (ui ) = ua0 · · · uak−1

for g(i) = a0 · · · ak−1

Then τ(f ∞(0)) = ρ(g∞(0))
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The proof requires τ(f n(ui )) = ρ(gn+1(0)) for all n which is only
possible if f and g have the same dominant eigenvalue

If not, then the tool first replaces f by f 2 or f 3, and similar for g ,
in order to obtain the same dominant eigenvalue

Then the conditions of the theorem are checked, and if they hold,
then the general proof of the theorem is instantiated to the specific
case, yielding a proof that is readable without being aware of the
theorem, as in our example

As the proof is generated by a computer program, it also may work
for much larger cases where checking the conditions is very
laborious, and indeed it does

The origin of this research was in trying to find the smallest
representation of even(fib) as a morphic sequence
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Brute force computer search for a morphism g over {0, 1, 2, 3, 4}
such that |g(a|) ≤ 2 for all a and and the first N elements of
even(fib) and ρ(g∞(0)) coincide for some big number N gave

g(0) = 01, g(1) = 2, g(2) = 31, g(3) = 04, g(4) = 0

ρ(0) = ρ(1) = 0, ρ(2) = ρ(3) = ρ(4) = 1

for which it was easily checked that even(fib) and ρ(g∞(0))
coincide for the first million elements, so making it very likely that
even(fib) = ρ(g∞(0))

But how to prove this?

Try to prove τ(f ∞(0)) = ρ(g∞(0)) for some more complicated
f , τ for which even(fib) = τ(f ∞(0)) by construction
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In trying to prove τ(f ∞(0)) = ρ(g∞(0)), a proof was found after
g was replaced by g3

Later the proof was generalized to the theorem and the tool was
developed

It showed up to apply on many other examples

It does not apply on all examples

Improving the approach is a topic of ongoing research
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Conclusions

We gave equivalent characterizations of morphic sequences:

by automata (mix-DFAOs) and by finiteness of a particular
class of subsequences

We visualized morphic sequences by turtle figures

In particular we focused on finite figures and fractal figures

We gave an approach to automatically prove that two
morphic sequences are equal

Thank you
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