Morphic sequences: characterization, visualization and equality

Hans Zantema

Technische Universiteit Eindhoven and Radboud Universiteit Nijmegen (until Sept 2022)

Numeration, June, 2024

< 回 > < 回 > < 回 >

Sequences

Hans Zantema Morphic sequences: characterization, visualization and equality

ヘロト ヘロト ヘビト ヘビト

æ

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

$$\sigma = \sigma(0)\sigma(1)\sigma(2)\sigma(3)\cdots$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

$$\sigma = \sigma(0)\sigma(1)\sigma(2)\sigma(3)\cdots$$

A sequence is *ultimately periodic* if there exist k, n such that $\sigma(i + k) = \sigma(i)$ for all $i \ge n$

イロト イヨト イヨト

-

$$\sigma = \sigma(0)\sigma(1)\sigma(2)\sigma(3)\cdots$$

A sequence is *ultimately periodic* if there exist k, n such that $\sigma(i + k) = \sigma(i)$ for all $i \ge n$

These are boring

イロト イヨト イヨト

-

$$\sigma = \sigma(0)\sigma(1)\sigma(2)\sigma(3)\cdots$$

A sequence is *ultimately periodic* if there exist k, n such that $\sigma(i + k) = \sigma(i)$ for all $i \ge n$

These are boring

What are the simplest sequences that are *not* ultimately periodic?

イロト イヨト イヨト

Hans Zantema Morphic sequences: characterization, visualization and equality

| 4 回 🕨 🛪 臣 🕨 🛪 臣 🕨

A morphism $f : A \rightarrow A^+$ can be extended to strings and to sequences

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

A morphism $f : A \rightarrow A^+$ can be extended to strings and to sequences

If f(a) = au, $u \neq \epsilon$, then f has a *unique fixed point* starting in a:

イロト イポト イヨト イヨト

-

A morphism $f : A \rightarrow A^+$ can be extended to strings and to sequences

If f(a) = au, $u \neq \epsilon$, then f has a *unique fixed point* starting in a:

$$f(f(a)) = f(au) = f(a)f(u) = auf(u)$$

イロト 不得 トイヨト イヨト 三日

A morphism $f : A \rightarrow A^+$ can be extended to strings and to sequences

If f(a) = au, $u \neq \epsilon$, then f has a *unique fixed point* starting in a:

$$f(f(a)) = f(au) = f(a)f(u) = auf(u)$$

$$f(f(f(a))) = f(auf(u)) = auf(u)f^{2}(u)$$

イロト 不得 トイヨト イヨト 三日

A morphism $f : A \rightarrow A^+$ can be extended to strings and to sequences

If f(a) = au, $u \neq \epsilon$, then f has a *unique fixed point* starting in a:

$$f(f(a)) = f(au) = f(a)f(u) = auf(u)$$

$$f(f(f(a))) = f(auf(u)) = auf(u)f^{2}(u)$$

$$f^{\infty}(a) = auf(u)f^{2}(u)f^{3}(u)f^{4}(u)\cdots$$

イロト イポト イヨト イヨト

-

A morphism $f : A \rightarrow A^+$ can be extended to strings and to sequences

If f(a) = au, $u \neq \epsilon$, then f has a *unique fixed point* starting in a:

$$f(f(a)) = f(au) = f(a)f(u) = auf(u)$$

$$f(f(f(a))) = f(auf(u)) = auf(u)f^{2}(u)$$

$$f^{\infty}(a) = auf(u)f^{2}(u)f^{3}(u)f^{4}(u)\cdots$$

Such a sequence is called *pure morphic*

イロト イポト イヨト イヨト 三日

A morphism $f : A \rightarrow A^+$ can be extended to strings and to sequences

If f(a) = au, $u \neq \epsilon$, then f has a *unique fixed point* starting in a:

$$f(f(a)) = f(au) = f(a)f(u) = auf(u)$$

$$f(f(f(a))) = f(auf(u)) = auf(u)f^{2}(u)$$

$$f^{\infty}(a) = auf(u)f^{2}(u)f^{3}(u)f^{4}(u)\cdots$$

Such a sequence is called *pure morphic*

If $\tau: B \to A$ (called a *coding*) and σ is pure morphic over B, then $\tau(\sigma)$ is called *morphic*

▲口 → ▲圖 → ▲ 国 → ▲ 国 → ▲ 国 →

The *Thue-Morse* sequence

 $\boldsymbol{t}=0110100110010110\cdots$

is defined by $\mathbf{t} = f^{\infty}(0)$ for f(0) = 01, f(1) = 10

The *Thue-Morse* sequence

 $\mathbf{t} = \texttt{0110100110010110} \cdots$

is defined by $\mathbf{t} = f^{\infty}(0)$ for f(0) = 01, f(1) = 10

The Fibonacci sequence

 $\mathsf{fib} = 0100101001001\cdots$

is defined by fib = $f^{\infty}(0)$ for f(0) = 01, f(1) = 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

The *Thue-Morse* sequence

 $\mathbf{t} = \texttt{0110100110010110} \cdots$

is defined by $\mathbf{t} = f^{\infty}(0)$ for f(0) = 01, f(1) = 10

The Fibonacci sequence

 $\mathsf{fib} = 0100101001001\cdots$

is defined by fib = $f^{\infty}(0)$ for f(0) = 01, f(1) = 0

These are pure morphic

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

The *Thue-Morse* sequence

 $\mathbf{t} = \texttt{0110100110010110} \cdots$

is defined by $\mathbf{t} = f^{\infty}(0)$ for f(0) = 01, f(1) = 10

The Fibonacci sequence

 $\mathsf{fib} = 0100101001001\cdots$

is defined by fib = $f^{\infty}(0)$ for f(0) = 01, f(1) = 0

These are pure morphic

For f(0) = 0, f(1) = 10, f(2) = 210, $\tau(0) = 0$, $\tau(1) = \tau(2) = 1$ we obtain

$$\tau(f^{\infty}(2)) = 11010010^3 10^4 10^5 1 \cdots$$

The *Thue-Morse* sequence

 $\boldsymbol{t}=0110100110010110\cdots$

is defined by $\mathbf{t} = f^{\infty}(0)$ for f(0) = 01, f(1) = 10

The Fibonacci sequence

 $\mathsf{fib} = 0100101001001\cdots$

is defined by fib = $f^{\infty}(0)$ for f(0) = 01, f(1) = 0

These are pure morphic

For f(0) = 0, f(1) = 10, f(2) = 210, $\tau(0) = 0$, $\tau(1) = \tau(2) = 1$ we obtain

$$\tau(f^{\infty}(2)) = 11010010^3 10^4 10^5 1 \cdots$$

It is morphic; it is easily shown not to be pure morphic and the second

This talk

Hans Zantema Morphic sequences: characterization, visualization and equality

ヘロト 人間 トイヨト イヨト

æ

ヘロト ヘヨト ヘヨト ヘヨト

э

• Equivalent characterizations of the class of morphic sequences and the relation to numeration systems

・ロト ・ 同ト ・ ヨト ・ ヨト

- Equivalent characterizations of the class of morphic sequences and the relation to numeration systems
- Visualization by turtle graphics

・ロト ・ 同ト ・ ヨト ・ ヨト

- Equivalent characterizations of the class of morphic sequences and the relation to numeration systems
- Visualization by turtle graphics
- How to prove that two representations give the same sequence

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

The class of morphic sequences

Hans Zantema Morphic sequences: characterization, visualization and equality

| 4 回 🕨 🛪 臣 🕨 🛪 臣 🕨

э

The class of morphic sequences is closed under several operations, like

- adding or removing a string at the front,
- applying morphisms,
- take arithmetic subsequence like even

・ 同 ト ・ ヨ ト ・ ヨ ト

The class of morphic sequences is closed under several operations, like

- adding or removing a string at the front,
- applying morphisms,
- take arithmetic subsequence like even

Just like the class of *regular languages* is closed under several operations and has several equivalent characterizations, one may expect that a similar robustness of the class of morphic sequences gives rise to equivalent characterizations

・ 同 ト ・ ヨ ト ・ ヨ ト

The class of morphic sequences is closed under several operations, like

- adding or removing a string at the front,
- applying morphisms,
- take arithmetic subsequence like even

Just like the class of *regular languages* is closed under several operations and has several equivalent characterizations, one may expect that a similar robustness of the class of morphic sequences gives rise to equivalent characterizations

We investigate some results in this direction, along the lines of similar characterizations of *automatic sequences*, being morphic sequences for which all f(b) have the same length

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Tree structure

Hans Zantema Morphic sequences: characterization, visualization and equality

ヘロア 人間ア 人間ア 人間ア

Ξ.

Tree structure

The recursive calls in the definition of morphic sequence give rise to a *tree structure*

ヘロト 人間 とくほ とくほ とう

3

Tree structure

The recursive calls in the definition of morphic sequence give rise to a *tree structure*

For the Fibonacci sequence fib this starts in

Hans Zantema

Every internal node labeled by *a* has |f(a)| children, so Thue-Morse **t** gives a binary tree

ヘロト ヘロト ヘヨト ヘヨト

э

Every internal node labeled by a has |f(a)| children, so Thue-Morse **t** gives a binary tree

Every such f gives rise to a *numeration system*: numbering the nodes in a breadth-first way as we did gives rise to a bijection between \mathbb{N} and the set of finite paths in the tree

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Every internal node labeled by a has |f(a)| children, so Thue-Morse **t** gives a binary tree

Every such f gives rise to a *numeration system*: numbering the nodes in a breadth-first way as we did gives rise to a bijection between \mathbb{N} and the set of finite paths in the tree

The tree is *rational*, that is, has only finitely many distinct subtrees: one for every alphabet symbol

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Every such f gives rise to a *numeration system*: numbering the nodes in a breadth-first way as we did gives rise to a bijection between \mathbb{N} and the set of finite paths in the tree

The tree is *rational*, that is, has only finitely many distinct subtrees: one for every alphabet symbol

Sharing all equal subtrees gives rise to a finite representation, a *mix-DFAO*

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Every such f gives rise to a *numeration system*: numbering the nodes in a breadth-first way as we did gives rise to a bijection between \mathbb{N} and the set of finite paths in the tree

The tree is *rational*, that is, has only finitely many distinct subtrees: one for every alphabet symbol

Sharing all equal subtrees gives rise to a finite representation, a mix-DFAO

DFAO is DFA with output, that is, the symbol to be produced

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Every such f gives rise to a *numeration system*: numbering the nodes in a breadth-first way as we did gives rise to a bijection between \mathbb{N} and the set of finite paths in the tree

The tree is *rational*, that is, has only finitely many distinct subtrees: one for every alphabet symbol

Sharing all equal subtrees gives rise to a finite representation, a $\it{mix-DFAO}$

DFAO is DFA with output, that is, the symbol to be produced

Every node = state corresponds to a symbol *a* and has outgoing arrows labeled by $0, 1, \ldots, m-1$ where m = |f(a)|

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

Every such f gives rise to a *numeration system*: numbering the nodes in a breadth-first way as we did gives rise to a bijection between \mathbb{N} and the set of finite paths in the tree

The tree is *rational*, that is, has only finitely many distinct subtrees: one for every alphabet symbol

Sharing all equal subtrees gives rise to a finite representation, a mix-DFAO

DFAO is DFA with output, that is, the symbol to be produced

Every node = state corresponds to a symbol *a* and has outgoing arrows labeled by $0, 1, \ldots, m-1$ where m = |f(a)|

This mix-DFAO can be seen as a DFAO in which the transition function δ is *partial*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

The alphabet is assumed to be of the shape $\{0, 1, \ldots, m-1\}$

イロト イロト イヨト イヨト 三日

The alphabet is assumed to be of the shape $\{0, 1, \dots, m-1\}$ For fib the mix-DFAO reads

イロト イヨト イヨト

э

The alphabet is assumed to be of the shape $\{0, 1, \dots, m-1\}$

For fib the mix-DFAO reads

Theorem

A sequence is morphic if and only if it is represented by a mix-DFAO

Hans Zantema Morphic sequences: characterization, visualization and equality

э

ヘロト 人間 とくほ とくほ とう

3

Now we present such numeration systems in a much more general setting along the lines of the books *Formal Languages, Automata and Numeration Systems* by Michel Rigo

イロト イポト イヨト イヨト 三日

Now we present such numeration systems in a much more general setting along the lines of the books *Formal Languages, Automata and Numeration Systems* by Michel Rigo

An *abstract numeration system (ANS)* is a regular language *L* over the alphabet $\{0, 1, ..., m-1\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

Now we present such numeration systems in a much more general setting along the lines of the books *Formal Languages, Automata and Numeration Systems* by Michel Rigo

An abstract numeration system (ANS) is a regular language L over the alphabet $\{0, 1, \dots, m-1\}$

It defines a representation function $\operatorname{rep}_L : \mathbb{N} \to L$, being bijective and monotone wrt the genealogical order on L, that is, first look at the length, and then compare words of the same length lexicographically

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

Now we present such numeration systems in a much more general setting along the lines of the books *Formal Languages, Automata and Numeration Systems* by Michel Rigo

An abstract numeration system (ANS) is a regular language L over the alphabet $\{0, 1, \dots, m-1\}$

It defines a representation function $\operatorname{rep}_L : \mathbb{N} \to L$, being bijective and monotone wrt the genealogical order on L, that is, first look at the length, and then compare words of the same length lexicographically

If L consists of the words not starting in 0 then this corresponds to the normal m-ary representation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

For such an ANS L a sequence σ is called <u>L-automatic</u> if there exists a partial DFAO such that

$$\sigma(i) = \mu(\delta(q_0, \operatorname{rep}_L(i)))$$

for all $i \in \mathbb{N}$, where μ, δ, q_0 are the output function, transition function and initial state of the DFAO

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

-

For such an ANS L a sequence σ is called *L*-automatic if there exists a partial DFAO such that

$$\sigma(i) = \mu(\delta(q_0, \operatorname{rep}_L(i)))$$

for all $i \in \mathbb{N}$, where μ, δ, q_0 are the output function, transition function and initial state of the DFAO

Theorem

A sequence is morphic if and only if it is L-automatic for some ANS L

・ロン ・雪 と ・ ヨ と

For such an ANS L a sequence σ is called *L*-automatic if there exists a partial DFAO such that

$$\sigma(i) = \mu(\delta(q_0, \operatorname{rep}_L(i)))$$

for all $i \in \mathbb{N}$, where μ, δ, q_0 are the output function, transition function and initial state of the DFAO

Theorem

A sequence is morphic if and only if it is L-automatic for some ANS L

Here *L*-automatic allows much more freedom than the mix-DFAO representation we gave earlier

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

For such an ANS L a sequence σ is called *L*-automatic if there exists a partial DFAO such that

$$\sigma(i) = \mu(\delta(q_0, \operatorname{rep}_L(i)))$$

for all $i \in \mathbb{N}$, where μ, δ, q_0 are the output function, transition function and initial state of the DFAO

Theorem

A sequence is morphic if and only if it is L-automatic for some ANS L

Here *L*-automatic allows much more freedom than the mix-DFAO representation we gave earlier

Both theorems are correct, in fact the proof that any morphic sequence is L-automatic in Rigo's book essentially uses the mix-DFAO representation as we did in our proof

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

The terminology *mix-DFAO* was introduced in the LATA2013 paper by Endrullis, Grabmayer and Hendriks

・ ロ ト ・ 雪 ト ・ 目 ト

э

The terminology *mix-DFAO* was introduced in the LATA2013 paper by Endrullis, Grabmayer and Hendriks

There it was used to define the *mix-automatic sequences* in which the sequence defined by a mix-DFAO is different: to compute $\sigma(i)$ the sequence rep(i) is entered to the mix-DFAO in reverse order

・ 同 ト ・ ヨ ト ・ ヨ ト

The terminology *mix-DFAO* was introduced in the LATA2013 paper by Endrullis, Grabmayer and Hendriks

There it was used to define the *mix-automatic sequences* in which the sequence defined by a mix-DFAO is different: to compute $\sigma(i)$ the sequence rep(i) is entered to the mix-DFAO in reverse order

Their main result is that the classes of morphic sequences and mix-automatic sequences are incomparable

One more characterization of morphic sequences

Numbering the nodes of a tree by natural numbers yields a *parent* function $P : \mathbb{N}_{>0} \to \mathbb{N}$

・ 同 ト ・ ヨ ト ・ ヨ ト

One more characterization of morphic sequences

Numbering the nodes of a tree by natural numbers yields a *parent* function $P : \mathbb{N}_{>0} \to \mathbb{N}$

If the tree is rational, the corresponding function P is called a *rational tree function*

ヘロト ヘ団 ト ヘヨト ヘヨト

One more characterization of morphic sequences

Numbering the nodes of a tree by natural numbers yields a *parent* function $P : \mathbb{N}_{>0} \to \mathbb{N}$

If the tree is rational, the corresponding function P is called a *rational tree function*

For a sequence σ , a rational tree function P and a number n let $\sigma[n]$ be the subsequence of σ obtained by only keeping the elements of σ on positions k for which $P^m(k) = n$ for some m

Theorem

A sequence σ over Σ is morphic if and only if a rational tree function $P : \mathbb{N}_{>0} \to \mathbb{N}$ exists such that the set

 $\{\sigma[n] \mid n \in \mathbb{N}\}$

of subsequences of σ is finite.

イロト イボト イヨト イヨト

-

Hans Zantema Morphic sequences: characterization, visualization and equality

< 同 > < 国 > < 国 >

 Automatic sequences have several equivalent characterizations, based on automata (DFAO), morphic sequences and finiteness of kernel

・ 戸 ト ・ ヨ ト ・ ヨ ト …

- Automatic sequences have several equivalent characterizations, based on automata (DFAO), morphic sequences and finiteness of kernel
- For morphic sequences we also gave a characterization by automata, essentially by DFAOs for which the transition function is *partial*

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Automatic sequences have several equivalent characterizations, based on automata (DFAO), morphic sequences and finiteness of kernel
- For morphic sequences we also gave a characterization by automata, essentially by DFAOs for which the transition function is *partial*
- The characterization of automatic sequences by finiteness of the *kernel* is essentially about finiteness of a class of subsequences, we gave a similar characterization for morphic sequences

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

- Automatic sequences have several equivalent characterizations, based on automata (DFAO), morphic sequences and finiteness of kernel
- For morphic sequences we also gave a characterization by automata, essentially by DFAOs for which the transition function is *partial*
- The characterization of automatic sequences by finiteness of the *kernel* is essentially about finiteness of a class of subsequences, we gave a similar characterization for morphic sequences
- Feeding number representations in reverse direction into DFAO yields the same class of automatic sequences, for the variant for morphic sequences this is not the case

Turtle figures

Hans Zantema Morphic sequences: characterization, visualization and equality

<ロ> <同> <同> <同> <同> < 同>

æ

イロト イポト イヨト イヨト

э

For every $a \in A$ choose an angle $\alpha(a) \in \mathbf{R}$

・ロト ・ 同ト ・ ヨト ・ ヨト

-

For every $a \in A$ choose an angle $\alpha(a) \in \mathbf{R}$

Then a sequence σ over A has a *turtle curve*:

イロト イヨト イヨト

-

For every $a \in A$ choose an angle $\alpha(a) \in \mathbf{R}$

Then a sequence σ over A has a *turtle curve*:

Start in (0,0) and draw a segment of unit length in the direction $\alpha(\sigma(0))$, by which the current direction is $\alpha(\sigma(0))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

For every $a \in A$ choose an angle $\alpha(a) \in \mathbf{R}$

Then a sequence σ over A has a *turtle curve*:

Start in (0,0) and draw a segment of unit length in the direction $\alpha(\sigma(0))$, by which the current direction is $\alpha(\sigma(0))$

Next for i = 1, 2, 3, ... continue by adding $\alpha(\sigma(i))$ to the current direction and draw a segment in this direction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

For every $a \in A$ choose an angle $\alpha(a) \in \mathbf{R}$

Then a sequence σ over A has a *turtle curve*:

Start in (0,0) and draw a segment of unit length in the direction $\alpha(\sigma(0))$, by which the current direction is $\alpha(\sigma(0))$

Next for i = 1, 2, 3, ... continue by adding $\alpha(\sigma(i))$ to the current direction and draw a segment in this direction

The *turtle figure* is defined to be the union of all resulting segments

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

As a first example, consider f(0) = 0, f(1) = 10, f(2) = 210, giving

$$f^{\infty}(2) = 21010010^3 10^4 10^5 1 \cdots$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

As a first example, consider f(0) = 0, f(1) = 10, f(2) = 210, giving

$$f^{\infty}(2) = 21010010^3 10^4 10^5 1 \cdots$$

Choose $\alpha(0) = 0$, $\alpha(1) = \alpha(2) = 90^{\circ}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙
As a first example, consider f(0) = 0, f(1) = 10, f(2) = 210, giving

$$f^{\infty}(2) = 21010010^3 10^4 10^5 1 \cdots$$

Choose
$$\alpha(0) = 0$$
, $\alpha(1) = \alpha(2) = 90^{\circ}$

This gives rise to the following turtle figure

イロト イポト イヨト イヨト

3

Hans Zantema

Morphic sequences: characterization, visualization and equality

・ロット (四) (日) (日) (日)

For instance, the *Thue-Morse* sequence

 $\boldsymbol{t}=0110100110010110\cdots$

defined by $\mathbf{t} = f^{\infty}(0)$ for f(0) = 01, f(1) = 10 is composed from $f^{3}(0) = 01101001$ and $f^{3}(1) = 10010110$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

For instance, the Thue-Morse sequence

 $\boldsymbol{t}=0110100110010110\cdots$

defined by $\mathbf{t} = f^{\infty}(0)$ for f(0) = 01, f(1) = 10 is composed from $f^{3}(0) = 01101001$ and $f^{3}(1) = 10010110$

One proves that if $2^n(\alpha(0) + \alpha(1))$ is a multiple of $360^\circ = 2\pi$, then both $f^{n+2}(0)$ and $f^{n+2}(1)$ give rise to turtle figures that end where they started, both in position and angle

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

For instance, the Thue-Morse sequence

 $\mathbf{t} = 0110100110010110 \cdots$

defined by $\mathbf{t} = f^{\infty}(0)$ for f(0) = 01, f(1) = 10 is composed from $f^{3}(0) = 01101001$ and $f^{3}(1) = 10010110$

One proves that if $2^n(\alpha(0) + \alpha(1))$ is a multiple of $360^\circ = 2\pi$, then both $f^{n+2}(0)$ and $f^{n+2}(1)$ give rise to turtle figures that end where they started, both in position and angle

Hence in that case the turtle figure of the infinite sequence $\mathbf{t} = f^{\infty}(0)$ draws these two finite turtle figures over and over again, so is *finite*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

For instance, the *Thue-Morse* sequence

 $\mathbf{t} = 0110100110010110\cdots$

defined by $\mathbf{t} = f^{\infty}(0)$ for f(0) = 01, f(1) = 10 is composed from $f^{3}(0) = 01101001$ and $f^{3}(1) = 10010110$

One proves that if $2^n(\alpha(0) + \alpha(1))$ is a multiple of $360^\circ = 2\pi$, then both $f^{n+2}(0)$ and $f^{n+2}(1)$ give rise to turtle figures that end where they started, both in position and angle

Hence in that case the turtle figure of the infinite sequence $\mathbf{t} = f^{\infty}(0)$ draws these two finite turtle figures over and over again, so is *finite*

We give a few examples of resulting turtle figures of **t** where $2^n(\alpha(0) + \alpha(1))$ is a multiple of 360°

f(0) = 01, f(1) = 10, $\alpha(0) = \frac{\pi}{8}$, $\alpha(1) = \frac{63\pi}{64}$

Hans Zantema Morphic sequences: characterization, visualization and equality

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

イロト イヨト イヨト イヨト

æ

 $f(0) = 01, f(1) = 10, \alpha(0) = \frac{3\pi}{16}, \alpha(1) = \frac{117\pi}{128}$

э

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

 $f(0) = 01, f(1) = 10, \alpha(0) = \frac{61\pi}{64}, \alpha(1) = \frac{33\pi}{1024}$

Hans Zantema Morphic sequences: characterization, visualization and equality

More finite turtle figures

Hans Zantema Morphic sequences: characterization, visualization and equality

<ロ> (日) (日) (日) (日) (日)

æ

・ロット (四) (日) (日) (日)

If the turtle figure of $f^n(0)$ ends in a rational angle different from the initial angle, then the turtle figure of the periodic sequence $(f^n(0))^{\infty}$ is finite

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

If the turtle figure of $f^n(0)$ ends in a rational angle different from the initial angle, then the turtle figure of the periodic sequence $(f^n(0))^{\infty}$ is finite

If moreover the turtle figure of $f^n(1)$ ends in its initial position and angle, then the turtle curve of the sequence $f^{\infty}(0)$, being composed from $f^n(0)$ and $f^n(1)$ will be finite

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

If the turtle figure of $f^n(0)$ ends in a rational angle different from the initial angle, then the turtle figure of the periodic sequence $(f^n(0))^{\infty}$ is finite

If moreover the turtle figure of $f^n(1)$ ends in its initial position and angle, then the turtle curve of the sequence $f^{\infty}(0)$, being composed from $f^n(0)$ and $f^n(1)$ will be finite

We will give a few examples of this

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $f(0) = 0101, f(1) = 11, \alpha(0) = -132^{\circ}, \alpha(1) = 33\frac{3}{4}^{\circ} = \frac{3\pi}{16}$

Hans Zantema

Morphic sequences: characterization, visualization and equality

э

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○へ⊙

 $f(0) = 01, \ f(1) = 00, \ \alpha(0) = 140^{\circ}, \ \alpha(1) = -80^{\circ}$

Hans Zantema

Morphic sequences: characterization, visualization and equality

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ↔

Fractal turtle figures

Hans Zantema Morphic sequences: characterization, visualization and equality

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Apart from all these finite turtle figures, also infinite turtle figures are of interest

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

э

Apart from all these finite turtle figures, also infinite turtle figures are of interest

In particular *fractal turtle figures*, in its simplest form turtle figures of which the set P of end points of all the (infinitely many) end points of the segments have the following fractal property:

$$cP \subseteq P$$

for some magnifying factor c > 1, where the points in P are considered to be vectors with respect to some origin

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

Apart from all these finite turtle figures, also infinite turtle figures are of interest

In particular *fractal turtle figures*, in its simplest form turtle figures of which the set P of end points of all the (infinitely many) end points of the segments have the following fractal property:

$$cP \subseteq P$$

for some magnifying factor c > 1, where the points in P are considered to be vectors with respect to some origin

An immediate consequence of this definition is that every fractal turtle figure is infinite

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Example

・ロト ・ 日 ト ・ 日 ト ・ 日

obtained as the turtle figure of $f^{\infty}(0)$ for f(0) = 001111, f(1) = 10, $\alpha(0) = 0$, $\alpha(1) = 90^{\circ}$, giving a magnifying factor c = 2

<日</th>

obtained as the turtle figure of $f^{\infty}(0)$ for f(0) = 001111, f(1) = 10, $\alpha(0) = 0$, $\alpha(1) = 90^{\circ}$, giving a magnifying factor c = 2

Key idea: applying f causes scaling up factor c in turtle figure

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ↔

$f(0) = 011111, \ f(1) = 00, \ \alpha(0) = 45^{\circ}, \ \alpha(1) = -90^{\circ}$

Hans Zantema

<ロト・(日ト・モラト・モト・モート) Morphic sequences: characterization, visualization and equality

æ

Sierpinsky triangle, obtained by f(0) = 00001, f(1) = 11, $\alpha(0) = 120^{\circ}$, $\alpha(1) = 0$

イロト イヨト イヨト

▲ 伊 ▶ ▲ 王 ▶

f(0)=0101111, f(1)=110, $lpha(0)=90^\circ$, $lpha(1)=-90^\circ$

Hans Zantema Morphic sequences: characterization, visualization and equality

- 4 周 ト 4 日 ト 4 日

Hans Zantema Morphic sequences: characterization, visualization and equality

< ロ > < 回 > < 回 > < 回 > < 回 >

f(0) = 000110, f(1) = 100110, $\alpha(0) = 70^{\circ}$, $\alpha(1) = -105^{\circ}$

Hans Zantema Morphic sequences: characterization, visualization and equality

イロト イボト イヨト イヨト

-

All these examples and underlying theory are presented in

イロト イボト イヨト イヨト

All these examples and underlying theory are presented in

This book is written for a wide audience, and apart from turtle graphics of morphic sequences it contains a general mathematical introduction to infinity, and many mathematical challenges

(日本) (日本) (日本) 日

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Example:

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Example:

It happens that fib is equal to $ho(g^\infty(0))$ for g,
ho defined by

$$g(0) = 02, g(1) = 021, g(2) = 102, \rho(0) = \rho(1) = 0, \rho(2) = 1$$

イロト イヨト イヨト

Example:

It happens that fib is equal to $ho(g^\infty(0))$ for g,
ho defined by

$$g(0) = 02, g(1) = 021, g(2) = 102,
ho(0) =
ho(1) = 0,
ho(2) = 1$$

How to prove this?

イロト イヨト イヨト

Example:

It happens that fib is equal to $ho(g^\infty(0))$ for g,
ho defined by

$$g(0) = 02, g(1) = 021, g(2) = 102, \rho(0) = \rho(1) = 0, \rho(2) = 1$$

How to prove this?

fib = $f^{\infty}(0)$ for f(0) = 01, f(1) = 0, also if f is replaced by f^2 :

f(0) = 010, f(1) = 01

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Example:

It happens that fib is equal to $ho(g^\infty(0))$ for g,
ho defined by

$$g(0) = 02, g(1) = 021, g(2) = 102,
ho(0) =
ho(1) = 0,
ho(2) = 1$$

How to prove this?

fib = $f^{\infty}(0)$ for f(0) = 01, f(1) = 0, also if f is replaced by f^2 :

$$f(0) = 010, f(1) = 01$$

Claim to be proved: $f^{\infty}(0) = \rho(g^{\infty}(0))$

(0)
$$f^{n-1}(01) = \rho(g^n(0))$$

(1) $f^{n-1}(010) = \rho(g^n(1))$
(2) $f^{n-1}(001) = \rho(g^n(2))$

イロト イポト イヨト イヨト

э

$$\begin{array}{l} (0) \ f^{n-1}(01) = \rho(g^n(0)) \\ (1) \ f^{n-1}(010) = \rho(g^n(1)) \\ (2) \ f^{n-1}(001) = \rho(g^n(2)) \end{array}$$

Then our claim follows from (0)

・ロト ・ 同ト ・ ヨト ・ ヨト

э

(0)
$$f^{n-1}(01) = \rho(g^n(0))$$

(1) $f^{n-1}(010) = \rho(g^n(1))$
(2) $f^{n-1}(001) = \rho(g^n(2))$

Then our claim follows from (0)

Basis n = 1 of induction: $f^{0}(01) = 01 = \rho(g(0))$ $f^{0}(010) = 010 = \rho(g(1))$ $f^{0}(001)) = 001 = \rho(g(2))$

・ 同 ト ・ ヨ ト ・ ヨ ト

-

$$\begin{array}{l} (0) \ f^{n-1}(01) = \rho(g^n(0)) \\ (1) \ f^{n-1}(010) = \rho(g^n(1)) \\ (2) \ f^{n-1}(001) = \rho(g^n(2)) \end{array}$$

Then our claim follows from (0)

Basis n = 1 of induction: $f^{0}(01) = 01 = \rho(g(0))$ $f^{0}(010) = 010 = \rho(g(1))$ $f^{0}(001)) = 001 = \rho(g(2))$

Hence basis of induction proved

・ 戸 ト ・ ヨ ト ・ ヨ ト

ヘロト ヘロト ヘビト ヘビト

$$f^{n}(01)) = f^{n-1}(f(01)) = f^{n-1}(010\ 01)$$

Hans Zantema Morphic sequences: characterization, visualization and equality

ヘロト ヘロト ヘビト ヘビト

using

$$f^{n}(01)) = f^{n-1}(f(01)) = f^{n-1}(010\ 01)$$

$$=f^{n-1}(01\ 001)=
ho(g^n(02))=
ho(g^{n+1}(0))$$
IH (0) and IH (2)

<ロ> <同> <同> <同> <同> < 同>

$$f^{n}(01)) = f^{n-1}(f(01)) = f^{n-1}(010\ 01)$$

$$= f^{n-1}(01\ 001) = \rho(g^n(02)) = \rho(g^{n+1}(0))$$
 using IH (0) and IH (2) proving part (0)

▲ □ ▶ < E ▶</p>

포 🛌 포

$$f^{n}(010) = f^{n-1}(01001010) = \rho(g^{n}(021)) = \rho(g^{n+1}(1))$$

using IH (0) and IH (2) and IH (1)

・ロト ・ 四ト ・ ヨト ・ ヨト

3

$$f^{n}(010) = f^{n-1}(01001010) = \rho(g^{n}(021)) = \rho(g^{n+1}(1))$$

using IH (0) and IH (2) and IH (1)

Induction step part (2):

$$f^{n}(001) = f^{n-1}(01001001) = \rho(g^{n}(102)) = \rho(g^{n+1}(2))$$

using IH (1) and IH (0) and IH (2)

(日)

$$f^{n}(010) = f^{n-1}(01001010) = \rho(g^{n}(021)) = \rho(g^{n+1}(1))$$

using IH (0) and IH (2) and IH (1)

Induction step part (2):

$$f^{n}(001) = f^{n-1}(01001001) = \rho(g^{n}(102)) = \rho(g^{n+1}(2))$$

using IH (1) and IH (0) and IH (2)

Induction step proved, hence claim proved

イロト イポト イヨト イヨト 三日

3

That's not the case: I wrote a prototype tool that searches for a general pattern, and automatically generates the proof as we just gave it

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

That's not the case: I wrote a prototype tool that searches for a general pattern, and automatically generates the proof as we just gave it

The general pattern is given by the following theorem in which the alphabet for g is $\{0, 1, \ldots, n\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

That's not the case: I wrote a prototype tool that searches for a general pattern, and automatically generates the proof as we just gave it

The general pattern is given by the following theorem in which the alphabet for g is $\{0, 1, ..., n\}$

Theorem

For i = 0, 1, ..., n let w_i be the prefix in front of the first occurrence of i in $g^{\infty}(0)$, and write $u_i = f^{\infty}(0)_{|g(w_i)|,|g(w_ii)|}$ For i = 0, 1, ..., n assume that $\tau(u_i) = \rho(g(i))$ and $f(u_i) = u_{a_0} \cdots u_{a_{k-1}}$ for $g(i) = a_0 \cdots a_{k-1}$

イロト 不得 とくほ とくほ とうほう

That's not the case: I wrote a prototype tool that searches for a general pattern, and automatically generates the proof as we just gave it

The general pattern is given by the following theorem in which the alphabet for g is $\{0, 1, ..., n\}$

Theorem

For
$$i = 0, 1, ..., n$$
 let w_i be the prefix in front of the first
occurrence of i in $g^{\infty}(0)$, and write $u_i = f^{\infty}(0)_{|g(w_i)|,|g(w_ii)|}$
For $i = 0, 1, ..., n$ assume that $\tau(u_i) = \rho(g(i))$ and
 $f(u_i) = u_{a_0} \cdots u_{a_{k-1}}$ for $g(i) = a_0 \cdots a_{k-1}$
Then $\tau(f^{\infty}(0)) = \rho(g^{\infty}(0))$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

・ロット (四) (日) (日) (日)

If not, then the tool first replaces f by f^2 or f^3 , and similar for g, in order to obtain the same dominant eigenvalue

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

If not, then the tool first replaces f by f^2 or f^3 , and similar for g, in order to obtain the same dominant eigenvalue

Then the conditions of the theorem are checked, and if they hold, then the general proof of the theorem is instantiated to the specific case, yielding a proof that is readable without being aware of the theorem, as in our example

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

If not, then the tool first replaces f by f^2 or f^3 , and similar for g, in order to obtain the same dominant eigenvalue

Then the conditions of the theorem are checked, and if they hold, then the general proof of the theorem is instantiated to the specific case, yielding a proof that is readable without being aware of the theorem, as in our example

As the proof is generated by a computer program, it also may work for much larger cases where checking the conditions is very laborious, and indeed it does

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

If not, then the tool first replaces f by f^2 or f^3 , and similar for g, in order to obtain the same dominant eigenvalue

Then the conditions of the theorem are checked, and if they hold, then the general proof of the theorem is instantiated to the specific case, yielding a proof that is readable without being aware of the theorem, as in our example

As the proof is generated by a computer program, it also may work for much larger cases where checking the conditions is very laborious, and indeed it does

The origin of this research was in trying to find the smallest representation of even(fib) as a morphic sequence

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

$$g(0) = 01, g(1) = 2, g(2) = 31, g(3) = 04, g(4) = 0$$

 $ho(0) =
ho(1) = 0,
ho(2) =
ho(3) =
ho(4) = 1$

・ロト ・雪 ト ・ ヨ ト ・

-

$$g(0) = 01, g(1) = 2, g(2) = 31, g(3) = 04, g(4) = 0$$

 $ho(0) =
ho(1) = 0,
ho(2) =
ho(3) =
ho(4) = 1$

for which it was easily checked that even(fib) and $\rho(g^{\infty}(0))$ coincide for the first million elements, so making it very likely that even(fib) = $\rho(g^{\infty}(0))$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

$$g(0) = 01, g(1) = 2, g(2) = 31, g(3) = 04, g(4) = 0$$

 $ho(0) =
ho(1) = 0,
ho(2) =
ho(3) =
ho(4) = 1$

for which it was easily checked that even(fib) and $\rho(g^{\infty}(0))$ coincide for the first million elements, so making it very likely that even(fib) = $\rho(g^{\infty}(0))$

But how to prove this?

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

$$g(0) = 01, g(1) = 2, g(2) = 31, g(3) = 04, g(4) = 0$$

 $ho(0) =
ho(1) = 0,
ho(2) =
ho(3) =
ho(4) = 1$

for which it was easily checked that even(fib) and $\rho(g^{\infty}(0))$ coincide for the first million elements, so making it very likely that even(fib) = $\rho(g^{\infty}(0))$

But how to prove this?

Try to prove $\tau(f^{\infty}(0)) = \rho(g^{\infty}(0))$ for some more complicated f, τ for which even(fib) = $\tau(f^{\infty}(0))$ by construction

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

In trying to prove $au(f^\infty(0)) =
ho(g^\infty(0))$, a proof was found after g was replaced by g^3

・ロット (四) (日) (日) (日)
Later the proof was generalized to the theorem and the tool was developed

Later the proof was generalized to the theorem and the tool was developed

It showed up to apply on many other examples

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Later the proof was generalized to the theorem and the tool was developed

It showed up to apply on many other examples

It does not apply on all examples

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Later the proof was generalized to the theorem and the tool was developed

It showed up to apply on many other examples

It does not apply on all examples

Improving the approach is a topic of ongoing research

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Conclusions

Hans Zantema Morphic sequences: characterization, visualization and equality

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

2

• We gave equivalent *characterizations* of morphic sequences:

<ロ> (日) (日) (日) (日) (日)

э

• We gave equivalent *characterizations* of morphic sequences: by automata (mix-DFAOs) and by finiteness of a particular class of subsequences

- We gave equivalent *characterizations* of morphic sequences: by automata (mix-DFAOs) and by finiteness of a particular class of subsequences
- We visualized morphic sequences by *turtle figures*

・ロト ・四ト ・ヨト ・ヨト

- We gave equivalent *characterizations* of morphic sequences: by automata (mix-DFAOs) and by finiteness of a particular class of subsequences
- We visualized morphic sequences by *turtle figures* In particular we focused on *finite* figures and *fractal* figures

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

- We gave equivalent *characterizations* of morphic sequences: by automata (mix-DFAOs) and by finiteness of a particular class of subsequences
- We visualized morphic sequences by *turtle figures* In particular we focused on *finite* figures and *fractal* figures
- We gave an approach to automatically prove that two morphic sequences are *equal*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We gave equivalent *characterizations* of morphic sequences: by automata (mix-DFAOs) and by finiteness of a particular class of subsequences
- We visualized morphic sequences by *turtle figures* In particular we focused on *finite* figures and *fractal* figures
- We gave an approach to automatically prove that two morphic sequences are *equal*

Thank you

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト