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Numeration systems

A numeration system (U,B) consists of
▶ a sequence of natural numbers U = (un)n≥0 with u0 = 1, and
▶ a finite ordered digit set B such that for each n ∈ N there are

bk, . . . , b0 ∈ B with n =
∑k

i=0 biui.

We say that bk . . . b0 is the canonical representation of n if bk . . . b0
is the greatest representation of n for the lexicographic order.
We write

(n)U := bk . . . b0 · and [bk . . . b0]U = n.

Example (The base-q numeration system, q ∈ N)
U = (qn)n≥0, B = {0, 1, . . . q − 1}.
If q = 3, then

(26)3 = 222·



Zeckendorf numeration
Recall the Fibonacci numbers (Fn)n≥0, defined by

F−2 = 0

F−1 = 1,

Fn = Fn−1 + Fn−2 for n ≥ 0.

The Zeckendorf numeration system is Z= ((Fn)n, B = {0, 1}).

The canonical expansion (n)Z = bn . . . b0· satisfies bibi+1 = 0 for
each i.

Example

34 21 13 8 5 3 2 1 · 1 0
0 1 1 1 0 0 0 0 ·
1 0 0 1 0 0 0 0 ·

(42)Z = 10010000 · and [1110000]Z = 42.



Automaticity base U

A sequence (an)n≥0 taking values in a finite alphabet A is
U -automatic if there is a deterministic finite automaton whose
output is an when fed (n)U .
If U is the base-q numeration, we will say that (an)n≥0 is
q-automatic.

Example

a b
1

1
0 0

An automaton generating the 2-automatic Thue-Morse sequence:
If n = 17, then (n)2 = 10001 so a17 = a
If n = 15, then (n)2 = 1111 so a15 = a.

an = a precisely when (n)2 contains an even number of the digit 1.



Act 1 The classical base-q case



A characterisation of q-automaticity for q = pn, p prime
Theorem (Christol’s theorem 1980)
Let (an)n be a sequence in Fq, with q = pn for some n. Then
(an)n is q-automatic iff f(x) =

∑
n≥0

anx
n is algebraic over Fq(x).

Example
For the Catalan numbers (Cn)n≥0

▶ y =
∑
n≥0

Cnx
n satisfies xy2 − y + 1 = 0 over Q, so

▶ y =
∑
n≥0

Cn mod 3xn satisfies xy2 + 2y + 1 = 0 over F3, and hence

(Cn mod 3)n≥0 is automatic.
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Christol’s theorem, limitations

Christol’s theorem does not provide a characterisation of
q-automatic sequences if q not a power of a prime.

Question Is there a generalisation of Christol’s theorem to all
q-automatic sequences?

Answer Yes.

Question Is there a version of Christol’s theorem for the Zeckendorf
numeration system?

Answer Yes!



Christol’s theorem, example
Let us find the annihilating polynomial for the Thue-Morse
sequence, defined as

an = 0 precisely when (n)2 contains an even number 1s.

f(x) =
∑
n

a2nx
2n +

∑
n

a2n+1x
2n+1

=
∑
n

anx
2n + x

∑
n

(an + 1)x2n

so, with s(x) = 1
1+x ,

f(x) = (1 + x)f(x2) + xs(x2) & s(x) = (1 + x)s(x2) (1)

and

f(x2) = (1 + x2)f(x4) + x2s(x4), & s(x2) = (1 + x2)s(x4) (2)

Substituting (2) in (1) we get that f(x) is a root of the Ore
polynomial

xf(x) = (1 + x)f(x2) + (1 + x)4f(x4).



q-Mahler equations

Let R be any commutative ring and let q ≥ 2 be any natural
number. Define the linear operator Φ : R[[x]] → R[[x]] as

Φ(f(x)) = f(xq).

Let Ai(x) ∈ R[x] be polynomials. The equation

P (x, y) =
d∑

i=0

Ai(x)Φ
i(y) = 0

is called a q-Mahler equation.

If f ∈ R[[x]] satisfies P (x, f(x)) = 0, then it is called q-Mahler.

If q = pk, then a pk-Mahler equation over a finite field is just a
polynomial.



From automatic to regular sequences

Definition
A sequence (an)n≥0 taking values in a finite alphabet A is
U -automatic if there is a deterministic finite automaton whose
output is an when fed (n)U .



From automatic to regular sequences

Definition (Allouche-Shallit)
A sequence (an)n≥0 taking values in a finite alphabet A
commutative ring R is U -automatic U -regular if there is a
deterministic finite automaton weighted automaton whose output is
an when fed (n)U .



From automatic to regular sequences

Definition (Allouche-Shallit)
A sequence (an)n≥0 taking values in a finite alphabet A
commutative ring R is U -automatic U -regular if there is a
deterministic finite automaton weighted automaton whose output is
an when fed (n)U .

Theorem (Allouche-Shallit, 1992)
A sequence is q-regular and takes on finitely many values if and
only if it is q-automatic.



Examples

All from Allouche-Shallit’s article, 1992:
▶ an = # 1’s in (n)2 defines a 2-regular sequence
▶ the sequence

0, 2, 6, 8, 20, 24, . . . ,

which lists the numerators of the left endpoints of the Cantor
set, is 2-regular.

▶ an = (nj)n≥0 is 2-regular,
▶ an =

∑n
i=1⌊loga i⌋ is q-regular.

▶ The number of comparisons required to mergesort n items,
▶ For a ∈ R, (an)n≥0 is q-regular if and only if a = 0 or a is a

root of unity.



Weighted automata
A weighted automaton A with weights in the commutative ring R
consists of
▶ a finite state set S,
▶ an alphabet B
▶ a transition weight function ∆ : S ×B × S → R which assigns

a weight to each labelled edge, denoted s b:r−→ s′, and
▶ initial and final weight functions I : S → R and F : S → R.

Example
Let B = {0, 1} and R = F2.

s t
1 1

0:1
1:1

1:1

0:1
1:1



Generating sequences using weighted automata
In a weighted automaton, given a word, there may be many paths
that word can follow. We are interested in the sum of the weights
of all paths that this word follows.
e.g., the word 10110 follows three different paths, each of weight 1:

s t t t t t

s s s t t t

s s s s t t

and since (22)2 = 10110 and R = F2, we have u22 = 3 mod 2 = 1.

s t
1 1

0:1
1:1

1:1

0:1
1:1

Question: Given an automatic sequence, can one define a weighted
automaton that generates it?



Theorem (Christol 1979)
Let q be a power of a prime, and let (un) be a sequence over Fq.
The (un) is q-regular if and only if it is the solution of a q-Mahler
equation.

Theorem (Becker 1992, Dumas 1993)
Let q ≥ 2, and let (un) be a sequence over a commutative ring R.
▶ If (un) is q-regular sequence then it is the solution of a

q-Mahler equation, and
▶ if (un) is the solution of an isolating q-Mahler equation, i.e., of

the form y =
∑d

i=1Ai(x)Φ
i(y), then it is q-regular.



From isolating Mahler equations to weighted automata

Theorem (Carton, Y, 2024)
Let q ≥ 2 be a natural number. There exists a universal
q-automaton A, such that any isolating q-Mahler equation P (x, y)
over a commutative ring R with initial condition f0 provides
weights for A, so that the corresponding weighted automaton
generates the solution f(x) of P (x, y) with f(0) = f0.

▶ The universal q-automaton A consists of a countable set of
states S and a transition relation in S × {0, 1, . . . , q − 1} × S.

▶ Given an isolating q-Mahler equation
P (x, y) = y −

∑d
i=1

(∑h
j=0 αi,jx

j
)
Φi(y), we use its

coefficients αi,j as weights, setting other edge weights to zero,
so reducing A to a weighted automaton.

▶ An important property that we use to prove this theorem is the
linearity of the map m 7→ qm.



Example

A 2-Mahler equation with height 3 and exponent 2 gives
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Example

whilst if the exponent drops to one we have
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Act 2
Mahler equations for Zeckendorf

numeration



From q-Mahler equations to Z-Mahler equations

Recall

Theorem (Becker 1992, Dumas 1993)
Let q ∈ N, and let (un) be a sequence over a commutative ring R.
▶ If (un) is q-regular, then it is the solution of a q-Mahler

equation, and
▶ if (un) is a solution of an isolating q-Mahler equation, then it

is q-regular.

We prove a version of this theorem for the Zeckendorf numeration



From q-Mahler equations to Z-Mahler equations

Theorem (Carton, Y, 2024)
Let R be a commutative ring, and let (un) be a sequence over R.
Z-Mahler equation.
▶ If (un) is q-regular Z-regular, then it is the solution of a

q-Mahler Z-Mahler equation, and
▶ if (un) is a solution of an isolating q-Mahler Z-Mahler

equation, then it is q-regular Z-regular.



New Ingredients

Our proof strategy was to emulate our proof in the case of
q-numeration, i.e.,
▶ to define the linear Z-version of the map m 7→ qm, and
▶ to define the appropriate concept of a Z-Mahler equation,

in order to construct a weighted Z-automaton directly from an
isolating Z-Mahler equation.



The Zeckendorf analogue of n 7→ qn

The map f(n) = qn can be written f(n) := [w0]q where w = (n)q.

So, for (n)Z = w, define ϕ : N → N as

ϕ(n) := [w0]Z .

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

ϕ(n) 0 2 3 5 7 8 10 11 13 15 16 18 20 21

Issue: ϕ is not linear.

For example,

3 = ϕ(2) = ϕ(1 + 1) ̸= 2ϕ(1) = 4.



Dealing with the nonlinearity of ϕ

Recall ϕ(n) := [(n)Z 0]Z .

Define the linearity defect δ by

δ(m,n) = ϕ(m+ n)− ϕ(m)− ϕ(n).

A simple application of Binet’s formula gives

Lemma
For natural numbers m,n, we have −1 ≤ δ(m,n) ≤ 1.

In other words, ϕ is almost linear.

We would like to track the linearity defect.



Regularity of Z-expansions, and application
Given a finite set C, consider LC := {w ∈ C∗ : [w]Z = 0}.

Example
Let C = {0, 1,−1}. Then the following belong to LC :

5 3 2 1 · 1 0
0 0 0 0 ·
1 -1 -1 0 ·
1 -1 0 -1 · -1

Theorem (Frougny)
For C ⊂ Z finite, there is a deterministic automaton which accepts
exactly LC .

Corollary
There exists a deterministic automaton, which on input of (m)Z
and (n)Z , outputs the linearity defect δ(m− n, n) for m ≥ n ≥ 0.



Going back to our strategy

We have defined the linear regular map m 7→ ϕ(m).

We now define the Z-version of Φq(
∑

n fnx
n) =

∑
n fnx

qn.

Define the Z-Mahler operator Φ : R[[x]] → R[[x]] as

Φ
(∑
n≥0

fnx
n
)
:=

∑
n≥0

fnx
ϕ(n).

The equation

P (x, y) =

d∑
i=0

Ai(x)Φ
i(y) = 0

with Ai(x) ∈ R[x], is a Z-Mahler equation.

If f ∈ R[[x]] satisfies
∑d

i=0Ai(x)Φ
i(f) = 0, then it is Z-Mahler.



We can now prove the following by combining the classical (base-q)
construction with the automaton tracking the linearity defect.

Theorem (Carton, Y, 2024)
Let R be a commutative ring, and let (un) be a sequence over R.
Z-Mahler equation. If (un) is Z-regular, then it is the solution of a
Z-Mahler equation, and conversely, if (un) is a solution of an
isolating Z-Mahler equation, then it is Z-regular.
Example Let

an = # representations of n as a sum of distinct Fibonacci numbers.

Then

f(x) =
∑
n

anx
n =

∏
n

(1 + xFn) and f(x) = (1 + x)Φ(f(x)).
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Questions

▶ Allouche and Shallit show that for a ∈ R, (an)n≥0 is q-regular
if and only if a = 0 or a is a root of unity. Is there a similar
result for Z-regular sequences?

▶ Using this, Bell, Chyzak, Coons, & Dumas characterise
q-regular series in terms of the q-Mahler equations they satisfy.
Is there a similar characterisation for Z-numeration?

▶ Adamczewski-Bell and Shäfke-Singer show that a sequence
which is both k- and l-Mahler over a field of characteristic
zero, with k and l multiplicatively independent, must be
rational. Which series are both k- and Z-Mahler?


