

Substitutive number systems

Paul Surer

University of Natural Resources and Life Sciences Vienna Department of Integrative Biology and Biodiversity Research Institute of Mathematics

Utrecht, June 2024

We are interested in a generalisation of the Dumont-Thomas numeration.

We are interested in a generalisation of the Dumont-Thomas numeration.

The (classical) Dumont-Thomas numeration

We are interested in a generalisation of the Dumont-Thomas numeration.

- The (classical) Dumont-Thomas numeration
- A generalisation of the Dumont-Thomas numeration

We are interested in a generalisation of the Dumont-Thomas numeration.

- The (classical) Dumont-Thomas numeration
- A generalisation of the Dumont-Thomas numeration
- Relations with (generalised) beta-expansions

Letters and words

We let denote

• $\mathcal{A} := \{1, 2, \dots, m\}$ a finite set (alphabet);

•
$$\mathcal{A}^*$$
 the finite words over \mathcal{A} ;

 $\triangleright \ \varepsilon \in \mathcal{A}^*$ the empty word;

For a word $X = x_1, ..., x_n \in \mathcal{A}^*$ and a letter $y \in \mathcal{A}$ we define

$$|X|_{y} := \#\{j \in \{1, ..., n\} | x_{j} = y\}$$

$$|X| := \sum_{y \in \mathcal{A}} |X|_{y},$$

$$\mathbf{I}(X) := (|X|_{1}, |X|_{2}, ..., |X|_{m})^{T} \in \mathbb{Z}^{m}.$$

Substitutions

- Let $\sigma : \mathcal{A}^* \mapsto \mathcal{A}^*$ be a non-erasing morphism (substitution).
- Let $M_{\sigma} := (\mathbf{l}(\sigma(1)), \mathbf{l}(\sigma(2)), \dots, \mathbf{l}(\sigma(m))) \in \mathbb{R}^{m \times m}$ be the incidence matrix. We have $\mathbf{l}(\sigma(W)) = M_{\zeta} \cdot \mathbf{l}(X)$ for all $X \in \mathcal{A}^*$
- We require σ to be primitive: there exists a positive integer n such that Mⁿ_ζ is strictly positive.
- We denote by θ the (real) Perron-Frobenius eigenvalue of M_σ (ie., θ > 1) and by **v** ∈ Q(θ)^m a strictly positive left eigenvector with respect to θ.

We define

$$\lambda(X): \mathcal{A}^* \longrightarrow \mathbb{R}, X \longmapsto \langle \mathbf{l}(X), \mathbf{v} \rangle.$$

Let σ be a substitution over the alphabet \mathcal{A} . We define the following graph known as *prefix graph*.

The set of vertices is \mathcal{A} .

Let σ be a substitution over the alphabet \mathcal{A} . We define the following graph known as *prefix graph*.

- The set of vertices is \mathcal{A} .
- For each x ∈ A the outgoing edges are defined as follows: Let σ(x) =x₁x₂ ··· x_kx_{k+1} ··· x_n

Let σ be a substitution over the alphabet \mathcal{A} . We define the following graph known as *prefix graph*.

- The set of vertices is \mathcal{A} .
- For each $x \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(x) = \underbrace{x_1 x_2 \cdots x_k}_{P_k} \underbrace{x_{k+1} \cdots x_n}_{P_k}$: For each $k \in \{0, \dots, n-1\}$ we have an edge $x \xrightarrow{(P_k, x_{k+1})} \underbrace{x_{k+1}}_{X_{k+1}}$.

Let σ be a substitution over the alphabet \mathcal{A} . We define the following graph known as *prefix graph*.

The set of vertices is
$$\mathcal{A}$$
.

For each
$$x \in \mathcal{A}$$
 the outgoing edges are defined as follows:
Let $\sigma(x) = \underbrace{x_1 x_2 \cdots x_k}_{P_k} x_{k+1} \cdots x_n$:
For each $k \in \{0, ..., n-1\}$ we have an edge
 $x \xrightarrow{(P_k, x_{k+1})} x_{k+1}$.

For a vertex $x \in \mathcal{A}$ the outgoing edges can be ordered with respect to \prec :

$$(D_1, y_1) \prec (D_2, y_2) \Leftrightarrow |D_1| < |D_2| \quad (\Leftrightarrow D_1 \text{ is a prefix of } D_2).$$

Let σ be a substitution over the alphabet \mathcal{A} . We define the following graph known as *prefix graph*.

The set of vertices is
$$\mathcal{A}$$
.

For each $x \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(x) = \underbrace{x_1 x_2 \cdots x_k}_{P_k} x_{k+1} \cdots x_n$: For each $k \in \{0, \dots, n-1\}$ we have an edge $x \xrightarrow{(P_k, x_{k+1})} x_{k+1}$.

For a vertex $x \in \mathcal{A}$ the outgoing edges can be ordered with respect to \prec :

$$(D_1, \mathsf{y}_1) \prec (D_2, \mathsf{y}_2) \Leftrightarrow |D_1| < |D_2| \quad (\Leftrightarrow D_1 \text{ is a prefix of } D_2).$$

The maximal vertex is $(x_1 \cdots x_{n-1}, x_n)$.

Paul Surer

Dumont-Thomas numeration

Theorem (Dumont-Thomas, 1989)

Let $x \in \mathcal{A}$. Then for each $\gamma \in [0; \lambda(x))$ there exists a unique walk in the prefix graph $(D_j, x_j)_{j \ge 1}$ that starts in x such that (D_j, x_j) is not the maximal edge for infinitely many indices $j \in \mathbb{N}$ that satisfies

$$\gamma = \sum_{j \ge 1} \lambda(D_j) \, \theta^{-j} \qquad (\sigma, \mathbf{x}) - \text{expansion.}$$

Inverse Letters

We let denote

For a word $X = x_1, \dots, x_n \in \mathcal{A}^*$ we let

$$\overline{X} := \overline{x}_n, \dots, \overline{x}_1.$$

For a word $X = x_1, ..., x_n \in \overline{\mathcal{A}}^*$ and a letter $y \in \mathcal{A}$ we define

$$|X|_{y} := -\#\{j \in \{1, ..., n\} | x_{j} = \bar{y}\}$$
$$|X| := \sum_{y \in \mathcal{A}} |X|_{y},$$
$$\mathbf{I}(X) := (|X|_{1}, |X|_{2}, ..., |X|_{m})^{T} \in \mathbb{Z}^{m}.$$

Coding prescriptions

Coding Prescription

A coding prescription (with respect to σ) is a function c with domain A that assigns to each letter a finite set of integers such that

- ► for all $x \in A$ we have $-|\sigma(x)| < k < |\sigma(x)|$ for all $k \in c(x)$.
- c(x) is a complete set of representatives modulo |σ(x)| for all x ∈ A, that is #c(x) = |σ(x)| and for all k, k' ∈ c(x) with k ≠ k' we have k ≢ k' mod |σ(x)|;

Coding prescriptions

Coding Prescription

A coding prescription (with respect to σ) is a function c with domain A that assigns to each letter a finite set of integers such that

- ► for all $x \in A$ we have $-|\sigma(x)| < k < |\sigma(x)|$ for all $k \in c(x)$.
- c(x) is a complete set of representatives modulo |σ(x)| for all x ∈ A, that is #c(x) = |σ(x)| and for all k, k' ∈ c(x) with k ≠ k' we have k ≢ k' mod |σ(x)|;

For a primitive substitution σ and a coding prescription c wrt, σ we call the pair (σ, c) a setting.

With a setting (σ, c) we associate the directed graph $G_{\sigma,c}$:

The set of vertices is $\mathcal{A} \cup \overline{\mathcal{A}}$.

With a setting (σ, c) we associate the directed graph $G_{\sigma,c}$:

- The set of vertices is $\mathcal{A} \cup \overline{\mathcal{A}}$.
- For each x ∈ A the outgoing edges are defined as follows: Let σ(x) =x₁x₂ ··· x_kx_{k+1} ··· x_n

With a setting (σ, c) we associate the directed graph $G_{\sigma,c}$:

The set of vertices is
$$\mathcal{A} \cup \overline{\mathcal{A}}$$
.

 For each x ∈ A the outgoing edges are defined as follows: Let σ(x) = x₁x₂ ··· x_k x_{k+1} ··· x_n: For each k ∈ c(x), k ≥ 0 we have an edge x (P_k,x_{k+1}) x_{k+1}.

With a setting (σ, c) we associate the directed graph $G_{\sigma,c}$:

 The set of vertices is A ∪ A.
 For each x ∈ A the outgoing edges are defined as follows: Let σ(x) = x₁x₂ ··· x_k x_{k+1} ··· x_n: For each k ∈ c(x), k ≥ 0 we have an edge x (P_k,x_{k+1}) x_{k+1}.

For each $k \in c(x)$, k > 0 we have an edge $x \xrightarrow{(P_k, \bar{x}_k)} \bar{x}_k$.

With a setting (σ, c) we associate the directed graph $G_{\sigma,c}$:

- The set of vertices is $\mathcal{A} \cup \overline{\mathcal{A}}$.
- For each $x \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(x) = \underbrace{x_1 x_2 \cdots x_k}_{P_k} x_{k+1} \cdots x_n$: For each $k \in c(x), k \ge 0$ we have an edge $x \xrightarrow{(P_k, x_{k+1})} x_{k+1}$.

For each $k \in c(x)$, k > 0 we have an edge $x \xrightarrow{(P_k, \bar{x}_k)} \bar{x}_k$.

For each $\overline{x} \in \overline{\mathcal{A}}$ the outgoing edges are defined as follows: Let $\sigma(x) = x_{-n} \cdots x_{k-1} x_k \cdots x_{-2} x_{-1}$

With a setting (σ, c) we associate the directed graph $G_{\sigma,c}$:

The set of vertices is $A \cup A$. For each $x \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(\mathbf{x}) = \mathbf{x}_1 \mathbf{x}_2 \cdots \mathbf{x}_k \mathbf{x}_{k+1} \cdots \mathbf{x}_n$: $\overrightarrow{P_k}$ For each $k \in c(x)$, $k \ge 0$ we have an edge $\mathsf{x} \xrightarrow{(P_k,\mathsf{x}_{k+1})} \mathsf{x}_{k+1}.$ For each $k \in c(x)$, k > 0 we have an edge $x \xrightarrow{(P_k, \bar{x}_k)} \bar{x}_{\nu}$. For each $\overline{x} \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(\mathbf{x}) = \mathbf{x}_{-n} \cdots \mathbf{x}_{k-1} \mathbf{x}_k \cdots \mathbf{x}_{-2} \mathbf{x}_{-1}$: Śk For each $k \in c(x)$, $k \leq 0$ we have an edge $\overline{\mathsf{x}} \xrightarrow{(S_k, \overline{\mathsf{x}}_{k-1})} \overline{\mathsf{x}}_{k-1}.$

With a setting (σ, c) we associate the directed graph $G_{\sigma,c}$:

The set of vertices is $A \cup A$. For each $x \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(\mathbf{x}) = \mathbf{x}_1 \mathbf{x}_2 \cdots \mathbf{x}_k \mathbf{x}_{k+1} \cdots \mathbf{x}_n$: \vec{P}_k For each $k \in c(x)$, $k \ge 0$ we have an edge $\mathsf{x} \xrightarrow{(P_k,\mathsf{x}_{k+1})} \mathsf{x}_{k+1}.$ For each $k \in c(x)$, k > 0 we have an edge $x \xrightarrow{(P_k, \bar{x}_k)} \bar{x}_{\nu}$. For each $\overline{x} \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(\mathbf{x}) = \mathbf{x}_{-n} \cdots \mathbf{x}_{k-1} \mathbf{x}_k \cdots \mathbf{x}_{-2} \mathbf{x}_{-1}$: Śk For each $k \in c(x)$, $k \leq 0$ we have an edge $\overline{\mathbf{x}} \xrightarrow{(\overline{S_k}, \overline{\mathbf{x}}_{k-1})} \overline{\mathbf{x}}_{k-1}.$

For each $k \in c(x)$, k < 0 we have an edge $\overline{x} \xrightarrow{(\overline{S_k}, x_k)} x_k$.

Ordering of edges

We define \prec on the outgoing edges of a vertex $x \in \mathcal{A} \cup \overline{A}$ of $G_{\sigma,c}$:

$$(D_1, \mathsf{y}_1) \prec (D_2, \mathsf{y}_2) \Leftrightarrow \begin{cases} |D_1| < |D_2| & \text{if } D_1 \neq D_2, \\ |\mathsf{y}_1| < |\mathsf{y}_2| & \text{if } D_1 = D_2. \end{cases}$$

$$\begin{split} \sigma: \mathbf{1} &\mapsto \mathbf{112}, \mathbf{2} \mapsto \mathbf{3}, \mathbf{3} \mapsto \mathbf{1} \\ c_0: & \mathbf{1} \mapsto \{\mathbf{0}, \mathbf{1}, \mathbf{2}\}, & \mathbf{2} \mapsto \{\mathbf{0}\}, & \mathbf{3} \mapsto \{\mathbf{0}\} \\ c_1: & \mathbf{1} \mapsto \{-2, -1, 0\}, & \mathbf{2} \mapsto \{\mathbf{0}\}, & \mathbf{3} \mapsto \{\mathbf{0}\} \\ c_2: & \mathbf{1} \mapsto \{-1, 0, 1\}, & \mathbf{2} \mapsto \{\mathbf{0}\}, & \mathbf{3} \mapsto \{\mathbf{0}\} \\ c_3: & \mathbf{1} \mapsto \{-2, 0, 2\}, & \mathbf{2} \mapsto \{\mathbf{0}\}, & \mathbf{3} \mapsto \{\mathbf{0}\} \end{split}$$

A generalised Dumont-Thomas numeration

$$\begin{split} \sigma: \mathbf{1} \mapsto \mathbf{112}, \mathbf{2} \mapsto \mathbf{3}, \mathbf{3} \mapsto \mathbf{1} \\ c_0: & \mathbf{1} \mapsto \{0, 1, 2\}, & \mathbf{2} \mapsto \{0\}, & \mathbf{3} \mapsto \{0\} \\ c_1: & \mathbf{1} \mapsto \{-2, -1, 0\}, & \mathbf{2} \mapsto \{0\}, & \mathbf{3} \mapsto \{0\} \\ c_2: & \mathbf{1} \mapsto \{-1, 0, 1\}, & \mathbf{2} \mapsto \{0\}, & \mathbf{3} \mapsto \{0\} \\ c_3: & \mathbf{1} \mapsto \{-2, 0, 2\}, & \mathbf{2} \mapsto \{0\}, & \mathbf{3} \mapsto \{0\} \end{split}$$

Induced sets

We are interested in the (infinite) walks on $G_{\sigma,c}$ and define for each $x \in \mathcal{A} \cup \overline{A}$

$$I(\mathbf{x}) = \left\{ \sum_{j \ge 1} \lambda(D_j) \, \theta^{-j} : (D_j, \mathbf{x}_j) \text{ is a walk that starts in } \mathbf{x} \right\}.$$

The set list $\{I(x) : x \in \mathcal{A} \cup \overline{A}\}$ is fixed by a graph directed iterated function system.

Induced sets

We are interested in the (infinite) walks on $G_{\sigma,c}$ and define for each $x \in \mathcal{A} \cup \overline{A}$

$$I(\mathbf{x}) = \left\{ \sum_{j \ge 1} \lambda(D_j) \, \theta^{-j} : (D_j, \mathbf{x}_j) \text{ is a walk that starts in } \mathbf{x} \right\}.$$

The set list $\{I(x) : x \in A \cup \overline{A}\}$ is fixed by a graph directed iterated function system.

For all $x \in \mathcal{A}$ we have

$$I(\mathbf{x}) \subset [0, \lambda(\mathbf{x})],$$
$$I(\overline{\mathbf{x}}) \subset [-\lambda(\mathbf{x}), 0].$$

The exact structure of I(x) is determined by the coding prescription.

Paul Surer

A generalised Dumont-Thomas numeration

Special types of settings

Continuous setting We say that the setting (σ, c) is continuous if

 $\forall x \in \mathcal{A} : c(x) \text{ is a set of consecutive integers.}$ (CS)

Special types of settings

Continuous setting We say that the setting (σ, c) is continuous if

 $\forall x \in \mathcal{A} : c(x) \text{ is a set of consecutive integers.}$ (CS) Even setting We say that the setting (σ, c) is even if $\forall x \in \mathcal{A} : |\sigma(x)| \equiv 1 \mod 2 \text{ and } c(x) \subset 2\mathbb{Z}.$

(ES)

Structure of I(x)

Theorem

Let σ be a primitive substitution and c be a coding prescription wrt. σ . Then the following items hold for all $x \in A$.

If (ES) holds then we have $I(x) = [0, \lambda(x)]$ and $I(\overline{x}) = [-\lambda(x), 0]$.

Structure of I(x)

Theorem

Let σ be a primitive substitution and c be a coding prescription wrt. σ . Then the following items hold for all $x \in A$.

- If (ES) holds then we have $I(x) = [0, \lambda(x)]$ and $I(\overline{x}) = [-\lambda(x), 0]$.
- I(x) ∪ (λ(x) + I(x̄)) = [0, λ(x)] where the union is disjoint wrt. the 1-dimensional Lebesgue measure if and only if (ES) does not hold.

Structure of I(x)

Theorem

Let σ be a primitive substitution and c be a coding prescription wrt. σ . Then the following items hold for all $x \in A$.

- If (ES) holds then we have $I(x) = [0, \lambda(x)]$ and $I(\overline{x}) = [-\lambda(x), 0]$.
- I(x) ∪ (λ(x) + I(x̄)) = [0, λ(x)] where the union is disjoint wrt. the 1-dimensional Lebesgue measure if and only if (ES) does not hold.
- If (CS) holds then I(x) and $I(\bar{x})$ are intervals.

σ : 1 \mapsto 1121123, 2 \mapsto 1, 3 \mapsto 112

$\sigma: 1 \mapsto 1121123, 2 \mapsto 1, 3 \mapsto 112$

A generalised Dumont-Thomas numeration

Generalised Dumont-Thomas numeration

If $I(x) = [\alpha, \beta]$ is an interval then we let denote $\tilde{I}(x) = [\alpha, \beta)$ the corresponding right-open interval.

Generalised Dumont-Thomas numeration

If $I(x) = [\alpha, \beta]$ is an interval then we let denote $\tilde{I}(x) = [\alpha, \beta)$ the corresponding right-open interval.

Theorem

Let (σ, c) satisfy (CS) of (ES) and $x \in \mathcal{A} \cup \overline{\mathcal{A}}$. Then for each $\gamma \in \tilde{I}(x)$ there exists a unique walk $(D_j, x_j)_{j \ge 1}$ in $G(\sigma, c)$ that starts in x such that (D_j, x_j) is not the maximal edge for infinitely many indices $j \in \mathbb{N}$ that satisfies

$$\gamma = \sum_{j \ge 1} \lambda(D_j) \, \theta^{-j} \qquad (\sigma, c, x) - \text{expansion.}$$

Generalised Dumont-Thomas numeration

If $I(x) = [\alpha, \beta]$ is an interval then we let denote $\tilde{I}(x) = [\alpha, \beta)$ the corresponding right-open interval.

Theorem

Let (σ, c) satisfy (CS) of (ES) and $x \in \mathcal{A} \cup \overline{\mathcal{A}}$. Then for each $\gamma \in \tilde{I}(x)$ there exists a unique walk $(D_j, x_j)_{j \ge 1}$ in $G(\sigma, c)$ that starts in x such that (D_j, x_j) is not the maximal edge for infinitely many indices $j \in \mathbb{N}$ that satisfies

$$\gamma = \sum_{j \ge 1} \lambda(D_j) \, \theta^{-j} \qquad (\sigma, c, x) - \text{expansion.}$$

Let c_0 be the coding prescription (wrt. σ) that assigns to each letter a set of non-negative integers. Then for each $x \in A$ we have $I(\overline{x}) = \{0\}$, $I(x) = [0, \lambda(x)]$ and for each $\gamma \in \tilde{I}(x)$ the (σ, c_0, x) -expansion corresponds to the (σ, x) -expansion.

Periodicity and Finiteness

Define the following properties for a setting (σ, c) that satisfies (CS) or (ES).

For all
$$x \in \mathcal{A} \cup \overline{\mathcal{A}}, \gamma \in \tilde{I}(x) \cap \mathbb{Q}(\theta)$$
:
the (σ, c, x) -expansion is eventually periodic; (P)

For all
$$x \in \mathcal{A} \cup \overline{\mathcal{A}}, \gamma \in \tilde{I}(x) \cap \mathbb{Z}[\lambda(1, \lambda(2), ..., \lambda(m)] :$$

the (σ, c, x) -expansion is a finite sum. (F)

Periodicity and Finiteness

Define the following properties for a setting (σ, c) that satisfies (CS) or (ES).

For all
$$x \in \mathcal{A} \cup \overline{\mathcal{A}}, \gamma \in \tilde{I}(x) \cap \mathbb{Q}(\theta)$$
:
the (σ, c, x) -expansion is eventually periodic; (P)

For all
$$x \in \mathcal{A} \cup \overline{\mathcal{A}}, \gamma \in \tilde{I}(x) \cap \mathbb{Z}[\lambda(1, \lambda(2), ..., \lambda(m)] :$$

the (σ, c, x) -expansion is a finite sum. (F)

Theorem
Let
$$(\sigma, c_1)$$
 and (σ, c_2) satisfy (CS) of (ES). Then
 (σ, c_1) satisfies (P) $\Leftrightarrow (\sigma, c_2)$ satisfies (P),
 (σ, c_1) satisfies (F) $\Leftrightarrow (\sigma, c_2)$ satisfies (P).

.

Generalised beta-expansion

Let $\delta \in [0, 1)$, $\beta > 1$ and define the generalised beta-transformation

$$T_{\beta,\delta}: [-\delta, 1-\delta) \longrightarrow [-\delta, 1-\delta), \gamma \longmapsto \beta \gamma - \lfloor \beta \gamma + \delta \rfloor.$$

For $\gamma \in [-\delta, 1-\delta)$ let $d_{\beta,\delta}(\gamma) := (d_j)_{j \ge 1}$ with

$$d_j = \beta T_{\beta,\delta}^{j-1}(\gamma) - T_{\beta,\delta}^j(\gamma).$$

Then we have

$$\gamma = \sum_{j \ge 1} d_j \beta^{-j}$$
 ((β, δ)-expansion).

Generalised beta-expansion

Let $\delta \in [0, 1)$, $\beta > 1$ and define the generalised beta-transformation

$$T_{\beta,\delta}: [-\delta, 1-\delta) \longrightarrow [-\delta, 1-\delta), \gamma \longmapsto \beta \gamma - \lfloor \beta \gamma + \delta \rfloor.$$

For $\gamma \in [-\delta, 1-\delta)$ let $d_{\beta,\delta}(\gamma) := (d_j)_{j \ge 1}$ with

$$d_j = \beta T_{\beta,\delta}^{j-1}(\gamma) - T_{\beta,\delta}^j(\gamma).$$

Then we have

$$\gamma = \sum_{j \ge 1} d_j \beta^{-j}$$
 ((β, δ)-expansion).

The case $\delta = 0$ corresponds to the (classical) beta-expansion (Rényi 1957). The case $\delta = 1/2$ corresponds to the symmetric beta-expansion by (Akiyama-Scheicher 2007).

Paul Surer

Relation with generalised beta-expansions

Generalised beta-substitution

Define the left-continuous counterpart of $T_{\varepsilon,\beta}$:

$$\begin{split} T^*_{\beta,\delta} &: (-\delta, 1-\delta] \longrightarrow (-\delta, 1-\delta], \gamma \longmapsto \beta \gamma + [-\beta \gamma + 1-\delta] \\ \text{and for } \gamma \in (-\delta, 1-\delta] \text{ let } d^*_{\beta,\delta}(\gamma) &:= (d^*_j)_{j \ge 1} \text{ with} \\ d^*_j &= \beta T^*_{\beta,\delta}{}^{j-1}(\gamma) - T^*_{\beta,\delta}{}^j(\gamma). \end{split}$$

We suppose that

- d_{β,δ}(-δ) is eventually periodic and consist of non-positive integers only;
- $d^*_{\beta,\delta}(1-\delta)$ is eventually periodic and consist of non-negative integers only.

Generalised beta-substitution

W.l.o.g we may assume that $d_{\delta,\beta}(-\delta)$ and $d^*_{\delta,\beta}(1-\delta)$ have the same pre-period and the same period:

$$\begin{aligned} d_{\beta,\delta}(-\delta) &= -\ell_1, \dots, -\ell_q, \left(-\ell_{q+1}, \dots, -\ell_{q+p}\right)^{\omega}, \\ d^*_{\beta,\delta}(1-\delta) &= r_1, \dots, r_q, \left(r_{q+1}, \dots, -r_{q+p}\right)^{\omega}, \end{aligned}$$

$$\begin{split} \ell_1, \dots, \ell_{q+p}, r_1, r_{q+p} &\geq 0. \\ \text{We define the substitution } \sigma_{\beta, \delta} \text{ over the alphabet} \\ \mathcal{A} &= \{1, \dots, m = p+q\} \text{ and the coding prescription } c_\delta \text{ wrt} \\ \sigma_{\beta, \delta}. \end{split}$$

$$\sigma_{\beta,\delta}(x) = \begin{cases} \underbrace{1\cdots 1}_{r_x} (x+1) \underbrace{1\cdots 1}_{\ell_x} & \text{if } x \in \{1, \dots, m-1\}, \\ \underbrace{1\cdots 1}_{r_x} (q+1) \underbrace{1\cdots 1}_{\ell_x} & \text{if } x = m, \\ c_{\delta}(x) = \{-\ell_x, \dots, r_x\}. \end{cases}$$

Relation with generalised beta-expansions

Generalised beta-expansions

Theorem

The substitution $\sigma_{\beta,\delta}$ is primitive and the dominant root coincides with β , i.e $\theta = \beta$. If we normalize the left eigenvector **v** such that we have $\lambda(1) = 1$ (i.e. the first entry of **v** equals 1) then

- $I(\overline{1}) = [-\delta, 0]$ and for each $\gamma \in \tilde{I}(\overline{1})$ the β, δ -expansion coincides with the $(\sigma_{\beta,\delta}, c_{\delta}, \overline{1})$ expansion;
- ► $I(1) = [0, 1 \delta]$ and for each $\gamma \in \tilde{I}(1)$ the β, δ -expansion coincides with the $(\sigma_{\beta,\delta}, c_{\delta}, 1)$ expansion.

Let β be the dominant root of $t^3 - 2t^2 - 1$ and $\delta = 0$.

$$\begin{split} &d_{\beta,0}(0)=&(0)^{\omega}=(0,0,0)^{\omega}\\ &d^*_{\beta,0}(1)=&(2,0,0)^{\omega} \end{split}$$

Let β be the dominant root of $t^3 - 2t^2 - 1$ and $\delta = 0$.

$$\begin{split} &d_{\beta,0}(0)=&(0)^{\omega}=(0,0,0)^{\omega}\\ &d^*_{\beta,0}(1)=&(2,0,0)^{\omega} \end{split}$$

We define

$$\begin{aligned} \sigma_{\beta,0} &: 1 \mapsto 112 & c_0 &: 1 \mapsto \{0, 1, 2\} \\ 2 \mapsto 3 & 2 \mapsto \{0\} \\ 3 \mapsto 1 & 3 \mapsto \{0\} \end{aligned}$$

Let β be the dominant root of $t^3 - 2t^2 - 1$ and $\delta = 0$.

$$d_{\beta,0}(0) = (0)^{\omega} = (0, 0, 0)^{\omega}$$
$$d_{\beta,0}^*(1) = (2, 0, 0)^{\omega}$$

We define

$$\begin{aligned} \sigma_{\beta,0} &: 1 \mapsto 112 & c_0 &: 1 \mapsto \{0, 1, 2\} \\ 2 \mapsto 3 & 2 \mapsto \{0\} \\ 3 \mapsto 1 & 3 \mapsto \{0\} \end{aligned}$$

For each $\gamma \in [0, 1)$ the $(\beta, 0)$ -expansions corresponds to the $(\sigma_{\beta,0}, c_0, 1)$ expansion (cf. Fabre 1995).

Let β be the dominant root of $t^3 - 2t^2 - 1$ and $\delta = 1/2$.

$$d_{\beta,1/2}(-1/2) = = (-1,0,0)^{\omega}$$
$$d_{\beta,1/2}^{*}(1/2) = (1,0,0)^{\omega}$$

Let β be the dominant root of $t^3 - 2t^2 - 1$ and $\delta = 1/2$.

$$d_{\beta,1/2}(-1/2) = = (-1,0,0)^{\omega}$$
$$d_{\beta,1/2}^{*}(1/2) = (1,0,0)^{\omega}$$

We define

$$\begin{aligned} \sigma_{\beta,1/2} &: 1 \mapsto 121 & c_{1/2} &: 1 \mapsto \{-1, 0, 1\} \\ & 2 \mapsto 3 & 2 \mapsto \{0\} \\ & 3 \mapsto 1 & 3 \mapsto \{0\} \end{aligned}$$

Let β be the dominant root of $t^3 - 2t^2 - 1$ and $\delta = 1/2$.

$$\begin{aligned} d_{\beta,1/2}(-1/2) &= (-1,0,0)^{\omega} \\ d_{\beta,1/2}^*(1/2) &= (1,0,0)^{\omega} \end{aligned}$$

We define

$\sigma_{eta,1/2}:$ 1 \mapsto 121	$c_{1/2}: 1 \mapsto \{-1, 0, 1\}$
2 ↔ 3	$2\mapsto\{0\}$
3 ↔ 1	$3 \mapsto \{0\}$

For each $\gamma \in [0, 1/2)$ the $(\beta, 1/2)$ -expansions corresponds to the $(\sigma_{\beta,0}, c_{1/2}, 1)$ expansion. For each $\gamma \in [-1/2, 0)$ the $(\beta, 1/2)$ -expansions corresponds to the $(\sigma_{\beta,0}, c_{1/2}, \overline{1})$ expansion.

Let
$$\beta = \frac{5+\sqrt{21}}{2}$$
 and $\delta = \frac{3}{\beta+1}$.

$$d_{\beta,\delta}(-\delta) = -2, (-2, -1)^{\omega}$$

$$d_{\beta,\delta}^*(1-\delta) = (2, 1)^{\omega} = 2, (1, 2)^{\omega}$$

Let
$$\beta = \frac{5+\sqrt{21}}{2}$$
 and $\delta = \frac{3}{\beta+1}$.

$$d_{\beta,\delta}(-\delta) = -2, (-2, -1)^{\omega}$$

$$d_{\beta,\delta}^*(1-\delta) = (2, 1)^{\omega} = 2, (1, 2)^{\omega}$$

We define

$$\begin{aligned} \sigma_{\beta,\delta} &: 1 \mapsto 11211 & c_{\delta} &: 1 \mapsto \{-2, -1, 0, 1, 2\} \\ 2 \mapsto 1311 & 2 \mapsto \{-2, -1, 0, 1\} \\ 3 \mapsto 1121 & 3 \mapsto \{-1, 0, 1, 2\} \end{aligned}$$

Let
$$\beta = \frac{5+\sqrt{21}}{2}$$
 and $\delta = \frac{3}{\beta+1}$.
 $d_{\beta,\delta}(-\delta) = -2, (-2, -1)^{\omega}$
 $d_{\beta,\delta}^*(1-\delta) = (2, 1)^{\omega} = 2, (1, 2)^{\omega}$

We define

$\sigma_{eta,\delta}:$ 1 \mapsto 11211	$c_{\delta}: 1 \mapsto \{-2, -1, 0, 1, 2\}$
2 ↔ 1311	$2 \mapsto \{-2, -1, 0, 1\}$
3 ↔ 1121	$3 \mapsto \{-1, 0, 1, 2\}$

For each $\gamma \in [0, 1 - \delta)$ the (β, δ) -expansions corresponds to the $(\sigma_{\beta,\delta}, c_{\delta}, 1)$ expansion. For each $\gamma \in [-\delta, 0)$ the (β, δ) -expansions corresponds to the $(\sigma_{\beta,\delta}, c_{\delta}, \overline{1})$ expansion.

The end

Thank you for your attention! Thank you for your interest!