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Program for the next 25 minutes

We are interested in a generalisation of the Dumont-Thomas
numeration.

▶ The (classical) Dumont-Thomas numeration
▶ A generalisation of the Dumont-Thomas numeration
▶ Relations with (generalised) beta-expansions
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Letters and words

We let denote
▶ 𝒜 ∶= {1, 2, … ,m} a finite set (alphabet);
▶ 𝒜∗ the finite words over 𝒜;
▶ 𝜀 ∈ 𝒜∗ the empty word;

For a word 𝑋 = x1, … , x𝑛 ∈ 𝒜
∗ and a letter y ∈ 𝒜 we define

|𝑋|y ∶=#{𝑗 ∈ {1, … , 𝑛}|𝑥𝑗 = y}

|𝑋| ∶=�

y∈𝒜

|𝑋|y,

𝐥(𝑋) ∶= (|𝑋|1, |𝑋|2, … , |𝑋|m)
𝑇
∈ ℤ𝑚.
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Substitutions
▶ Let 𝜎 ∶ 𝒜∗ ⟼𝒜∗ be a non-erasing morphism

(substitution).
▶ Let 𝑀𝜎 ∶= (𝐥(𝜎(1)), 𝐥(𝜎(2)), … , 𝐥(𝜎(m))) ∈ ℝ𝑚×𝑚 be

the incidence matrix. We have 𝐥(𝜎(𝑊)) = 𝑀𝜁 ⋅ 𝐥(𝑋) for
all 𝑋 ∈ 𝒜∗

▶ We require 𝜎 to be primitive: there exists a positive
integer 𝑛 such that 𝑀𝑛

𝜁 is strictly positive.
▶ We denote by 𝜃 the (real) Perron-Frobenius eigenvalue of

𝑀𝜎 (ie., 𝜃 > 1) and by 𝐯 ∈ ℚ(𝜃)𝑚 a strictly positive left
eigenvector with respect to 𝜃.

▶ We define

𝜆(𝑋) ∶ 𝒜∗ ⟶ℝ,𝑋 ⟼ ⟨𝐥(𝑋), 𝐯⟩.
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Prefix graph
Let 𝜎 be a substitution over the alphabet 𝒜. We define the
following graph known as prefix graph.
▶ The set of vertices is 𝒜.

▶ For each x ∈ 𝒜 the outgoing edges are defined as follows:
Let 𝜎(x) =x1x2⋯ x𝑘x𝑘+1⋯ x𝑛
:

For each 𝑘 ∈ {0,… , 𝑛 − 1} we have an edge
x

(𝑃𝑘,x𝑘+1)
−−−−−−→ x𝑘+1.

For a vertex x ∈ 𝒜 the outgoing edges can be ordered with
respect to ≺:

(𝐷1, y1) ≺ (𝐷2, y2) ⟺ |𝐷1| < |𝐷2| (⟺ 𝐷1 is a prefix of 𝐷2).

The maximal vertex is (x1⋯ x𝑛−1, x𝑛).

Paul Surer The Dumont-Thomas numeration 5 / 26



Prefix graph
Let 𝜎 be a substitution over the alphabet 𝒜. We define the
following graph known as prefix graph.
▶ The set of vertices is 𝒜.
▶ For each x ∈ 𝒜 the outgoing edges are defined as follows:

Let 𝜎(x) =x1x2⋯ x𝑘x𝑘+1⋯ x𝑛
:

For each 𝑘 ∈ {0,… , 𝑛 − 1} we have an edge
x

(𝑃𝑘,x𝑘+1)
−−−−−−→ x𝑘+1.

For a vertex x ∈ 𝒜 the outgoing edges can be ordered with
respect to ≺:

(𝐷1, y1) ≺ (𝐷2, y2) ⟺ |𝐷1| < |𝐷2| (⟺ 𝐷1 is a prefix of 𝐷2).

The maximal vertex is (x1⋯ x𝑛−1, x𝑛).

Paul Surer The Dumont-Thomas numeration 5 / 26



Prefix graph
Let 𝜎 be a substitution over the alphabet 𝒜. We define the
following graph known as prefix graph.
▶ The set of vertices is 𝒜.
▶ For each x ∈ 𝒜 the outgoing edges are defined as follows:

Let 𝜎(x) =x1x2⋯ x𝑘�������
𝑃𝑘

x𝑘+1⋯ x𝑛:

For each 𝑘 ∈ {0,… , 𝑛 − 1} we have an edge
x

(𝑃𝑘,x𝑘+1)
−−−−−−→ x𝑘+1.

For a vertex x ∈ 𝒜 the outgoing edges can be ordered with
respect to ≺:

(𝐷1, y1) ≺ (𝐷2, y2) ⟺ |𝐷1| < |𝐷2| (⟺ 𝐷1 is a prefix of 𝐷2).

The maximal vertex is (x1⋯ x𝑛−1, x𝑛).

Paul Surer The Dumont-Thomas numeration 5 / 26



Prefix graph
Let 𝜎 be a substitution over the alphabet 𝒜. We define the
following graph known as prefix graph.
▶ The set of vertices is 𝒜.
▶ For each x ∈ 𝒜 the outgoing edges are defined as follows:

Let 𝜎(x) =x1x2⋯ x𝑘�������
𝑃𝑘

x𝑘+1⋯ x𝑛:

For each 𝑘 ∈ {0,… , 𝑛 − 1} we have an edge
x

(𝑃𝑘,x𝑘+1)
−−−−−−→ x𝑘+1.

For a vertex x ∈ 𝒜 the outgoing edges can be ordered with
respect to ≺:

(𝐷1, y1) ≺ (𝐷2, y2) ⟺ |𝐷1| < |𝐷2| (⟺ 𝐷1 is a prefix of 𝐷2).

The maximal vertex is (x1⋯ x𝑛−1, x𝑛).

Paul Surer The Dumont-Thomas numeration 5 / 26



Prefix graph
Let 𝜎 be a substitution over the alphabet 𝒜. We define the
following graph known as prefix graph.
▶ The set of vertices is 𝒜.
▶ For each x ∈ 𝒜 the outgoing edges are defined as follows:

Let 𝜎(x) =x1x2⋯ x𝑘�������
𝑃𝑘

x𝑘+1⋯ x𝑛:

For each 𝑘 ∈ {0,… , 𝑛 − 1} we have an edge
x

(𝑃𝑘,x𝑘+1)
−−−−−−→ x𝑘+1.

For a vertex x ∈ 𝒜 the outgoing edges can be ordered with
respect to ≺:

(𝐷1, y1) ≺ (𝐷2, y2) ⟺ |𝐷1| < |𝐷2| (⟺ 𝐷1 is a prefix of 𝐷2).

The maximal vertex is (x1⋯ x𝑛−1, x𝑛).

Paul Surer The Dumont-Thomas numeration 5 / 26



Dumont-Thomas numeration

Theorem (Dumont-Thomas, 1989)
Let x ∈ 𝒜. Then for each 𝛾 ∈ [0; 𝜆(x)) there exists a unique
walk in the prefix graph (𝐷𝑗, x𝑗)𝑗≥1 that starts in x such that
(𝐷𝑗, x𝑗) is not the maximal edge for infinitely many indices
𝑗 ∈ ℕ that satisfies

𝛾 =�

𝑗≥1

𝜆(𝐷𝑗) 𝜃
−𝑗 (𝜎, x)−expansion.
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Inverse Letters
We let denote
▶ 𝒜 ∶= {1, 2, … ,m} the set of “inverse letters”;
▶ 𝒜

∗
the finite words over 𝒜;

For a word 𝑋 = x1, … , x𝑛 ∈ 𝒜
∗ we let

𝑋 ∶= x𝑛, … , x1.

For a word 𝑋 = x1, … , x𝑛 ∈ 𝒜
∗

and a letter y ∈ 𝒜 we define

|𝑋|y ∶= − #{𝑗 ∈ {1,… , 𝑛}|x𝑗 = ȳ}

|𝑋| ∶=�

y∈𝒜

|𝑋|y,

𝐥(𝑋) ∶= (|𝑋|1, |𝑋|2, … , |𝑋|m)
𝑇
∈ ℤ𝑚.
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Coding prescriptions

Coding Prescription
A coding prescription (with respect to 𝜎) is a function 𝑐 with
domain 𝒜 that assigns to each letter a finite set of integers
such that
▶ for all x ∈ 𝒜 we have −|𝜎(x)| < 𝑘 < |𝜎(x)| for all

𝑘 ∈ 𝑐(x).
▶ 𝑐(x) is a complete set of representatives modulo |𝜎(x)|

for all x ∈ 𝒜, that is #𝑐(x) = |𝜎(x)| and for all
𝑘, 𝑘′ ∈ 𝑐(x) with 𝑘 ≠ 𝑘′ we have 𝑘 ≢ 𝑘′ mod |𝜎(x)|;

For a primitive substitution 𝜎 and a coding prescription 𝑐 wrt,
𝜎 we call the pair (𝜎, 𝑐) a setting.
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Associated graph
With a setting (𝜎, 𝑐) we associate the directed graph 𝐺𝜎,𝑐:
▶ The set of vertices is 𝒜 ∪𝒜.

▶ For each x ∈ 𝒜 the outgoing edges are defined as follows:
Let 𝜎(x) =x1x2⋯ x𝑘x𝑘+1⋯ x𝑛
:

For each 𝑘 ∈ 𝑐(𝑥), 𝑘 ≥ 0 we have an edge
x

(𝑃𝑘,x𝑘+1)
−−−−−−→ x𝑘+1.

For each 𝑘 ∈ 𝑐(𝑥), 𝑘 > 0 we have an edge x
(𝑃𝑘,x𝑘)
−−−−→ x𝑘.

▶ For each x ∈ 𝒜 the outgoing edges are defined as follows:
Let 𝜎(x) =x−𝑛⋯ x𝑘−1x𝑘⋯ x−2x−1
:

For each 𝑘 ∈ 𝑐(𝑥), 𝑘 ≤ 0 we have an edge
x

(𝑆𝑘,x𝑘−1)
−−−−−−→ x𝑘−1.

For each 𝑘 ∈ 𝑐(𝑥), 𝑘 < 0 we have an edge x
(𝑆𝑘,x𝑘)
−−−−→ x𝑘.
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Ordering of edges

We define ≺ on the outgoing edges of a vertex x ∈ 𝒜 ∪ 𝐴 of
𝐺𝜎,𝑐:

(𝐷1, y1) ≺ (𝐷2, y2) ⟺ �
|𝐷1| < |𝐷2| if 𝐷1 ≠ 𝐷2,

|y1| < |y2| if 𝐷1 = 𝐷2.
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Example

𝜎 ∶ 1 ↦ 112, 2 ↦ 3, 3 ↦ 1

𝑐0 ∶ 1 ↦ {0, 1, 2}, 2 ↦ {0}, 3 ↦ {0}

𝑐1 ∶ 1 ↦ {−2,−1, 0}, 2 ↦ {0}, 3 ↦ {0}

𝑐2 ∶ 1 ↦ {−1, 0, 1}, 2 ↦ {0}, 3 ↦ {0}

𝑐3 ∶ 1 ↦ {−2, 0, 2}, 2 ↦ {0}, 3 ↦ {0}

Prefix graph

1 2 3
(11, 2) (𝜀, 3)

(𝜀, 1)
(𝜀,1)
(11)

𝐺𝜎,𝑐0

1 2 3

1 2 3
(𝜀, 3)

(𝜀, 3)

(𝜀, 1)

(𝜀, 1)

(𝜀, 2)

(1,1)

(11,1)
(11, 1)

(2,1)

(12,1)

(12, 1)(2, 1)

(1, 1)

(𝜀,1)
(1,1)
(𝜀,1)
(1,1)

(12, 1) (21, 1)

(𝜀, 1)(𝜀, 1)

(2, 2)(11, 2)(11, 2)
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Induced sets
We are interested in the (infinite) walks on 𝐺𝜎,𝑐 and define for
each x ∈ 𝒜 ∪ 𝐴

𝐼(x) = ��

𝑗≥1

𝜆(𝐷𝑗) 𝜃
−𝑗 ∶ (𝐷𝑗, x𝑗) is a walk that starts in x� .

The set list {𝐼(x) ∶ 𝑥 ∈ 𝒜 ∪ 𝐴} is fixed by a graph directed
iterated function system.

For all x ∈ 𝒜 we have

𝐼(x) ⊂ [0, 𝜆(x)],

𝐼(x) ⊂ [−𝜆(x), 0].

The exact structure of 𝐼(x) is determined by the coding
prescription.
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Special types of settings

Continuous setting We say that the setting (𝜎, 𝑐) is
continuous if

∀x ∈ 𝒜 ∶ 𝑐(𝑥) is a set of consecutive integers.
(CS)

Even setting We say that the setting (𝜎, 𝑐) is even if

∀x ∈ 𝒜 ∶ |𝜎(x)| ≡ 1 mod 2 and 𝑐(x) ⊂ 2ℤ.

(ES)
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Structure of 𝐼(𝑥)

Theorem
Let 𝜎 be a primitive substitution and 𝑐 be a coding prescription
wrt. 𝜎. Then the following items hold for all x ∈ 𝒜.
▶ If (ES) holds then we have 𝐼(x) = [0, 𝜆(x)] and

𝐼(x) = [−𝜆(x), 0].

▶ 𝐼(x) ∪ (𝜆(x) + 𝐼(x)) = [0, 𝜆(x)] where the union is
disjoint wrt. the 1-dimensional Lebesgue measure if and
only if (ES) does not hold.

▶ If (CS) holds then 𝐼(x) and 𝐼(x̄) are intervals.
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Example

𝜎 ∶ 1 ↦ 1121123, 2 ↦ 1, 3 ↦ 112

𝑐0(1) = {0, 1, 2, 3, 4, 5, 6}

𝑐0(2) = {0}

𝑐0(3) = {0, 1, 2}

(CS) satisfied

I(1)

I(2)

I(3)

I(1)

I(2)

I(3)

0 λ(1)λ(1)

0

λ(2)λ(2)

λ(3)λ(3)

𝑐(1) = {−6,−5,−4,−3,−2,−1, 0}

𝑐(2) = {0}

𝑐(3) = {−2,−1, 0}

(CS) satisfied

I(1)

I(2)

I(3)

I(1)

I(2)

I(3)

0 λ(1)λ(1)

0

λ(2)λ(2)

λ(3)λ(3)

𝑐(1) = {−4,−3,−2,−1, 0, 1, 2}

𝑐(2) = {0}

𝑐(3) = {0, 1, 2}

(CS) satisfied

I(1)

I(2)

I(3)

I(1)

I(2)

I(3)

0 λ(1)λ(1)

0

λ(2)λ(2)

λ(3)λ(3)
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Example

𝜎 ∶ 1 ↦ 1121123, 2 ↦ 1, 3 ↦ 112

𝑐(1) = {−5,−4,−1, 0, 1, 4, 5}

𝑐(2) = {0}

𝑐(3) = {−2, 0, 2}

I(1)

I(2)

I(3)

I(1)

I(2)

I(3)

0 λ(1)λ(1)

0

λ(2)λ(2)

λ(3)λ(3)

𝑐(1) = {−6,−5, 0, 3, 4, 5, 6}

𝑐(2) = {0}

𝑐(3) = {0, 1, 2}

I(1)

I(2)

I(3)

I(1)

I(2)

I(3)

0 λ(1)λ(1)

0

λ(2)λ(2)

λ(3)λ(3)

𝑐(1) = {−6,−4,−2, 0, 2, 4, 6}

𝑐(2) = {0}

𝑐(3) = {−2, 0, 2}

(ES) satisfied

I(1)

I(2)

I(3)

I(1)

I(2)

I(3)

0 λ(1)λ(1)

0

λ(2)λ(2)

λ(3)λ(3)
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Generalised Dumont-Thomas numeration
If 𝐼(𝑥) = [𝛼, 𝛽] is an interval then we let denote ̃𝐼(𝑥) = [𝛼, 𝛽)

the corresponding right-open interval.

Theorem
Let (𝜎, 𝑐) satisfy (CS) of (ES) and x ∈ 𝒜 ∪𝒜. Then for each
𝛾 ∈ ̃𝐼(x) there exists a unique walk (𝐷𝑗, x𝑗)𝑗≥1 in 𝐺(𝜎, 𝑐) that
starts in x such that (𝐷𝑗, x𝑗) is not the maximal edge for
infinitely many indices 𝑗 ∈ ℕ that satisfies

𝛾 =�

𝑗≥1

𝜆(𝐷𝑗) 𝜃
−𝑗 (𝜎, 𝑐, x)−expansion.

Let 𝑐0 be the coding prescription (wrt. 𝜎) that assigns to each
letter a set of non-negative integers. Then for each x ∈ 𝒜 we
have 𝐼(x) = {0}, 𝐼(x) = [0, 𝜆(x)] and for each 𝛾 ∈ ̃𝐼(x) the
(𝜎, 𝑐0, x)−expansion corresponds to the (𝜎, x)−expansion.
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Periodicity and Finiteness
Define the following properties for a setting (𝜎, 𝑐) that
satisfies (CS) or (ES).

For all x ∈ 𝒜 ∪𝒜, 𝛾 ∈ ̃𝐼(x) ∩ ℚ(𝜃) ∶

the (𝜎, 𝑐, x)−expansion is eventually periodic; (P)

For all x ∈ 𝒜 ∪𝒜, 𝛾 ∈ ̃𝐼(x) ∩ ℤ[𝜆(1, 𝜆(2), … , 𝜆(m)] ∶

the (𝜎, 𝑐, x)−expansion is a finite sum. (F)

Theorem
Let (𝜎, 𝑐1) and (𝜎, 𝑐2) satisfy (CS) of (ES). Then

(𝜎, 𝑐1) satisfies (P) ⟺ (𝜎, 𝑐2) satisfies (P),
(𝜎, 𝑐1) satisfies (F) ⟺ (𝜎, 𝑐2) satisfies (P).
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Generalised beta-expansion
Let 𝛿 ∈ [0, 1), 𝛽 > 1 and define the generalised
beta-transformation

𝑇𝛽,𝛿 ∶ [−𝛿, 1 − 𝛿) ⟶ [−𝛿, 1 − 𝛿), 𝛾 ⟼ 𝛽𝛾 − ⌊𝛽 𝛾 + 𝛿⌋.

For 𝛾 ∈ [−𝛿, 1 − 𝛿) let 𝑑𝛽,𝛿(𝛾) ∶= (𝑑𝑗)𝑗≥1 with

𝑑𝑗 = 𝛽𝑇
𝑗−1
𝛽,𝛿 (𝛾) − 𝑇

𝑗
𝛽,𝛿(𝛾).

Then we have

𝛾 =�

𝑗≥1

𝑑𝑗𝛽
−𝑗 ((𝛽, 𝛿)−expansion).

The case 𝛿 = 0 corresponds to the (classical) beta-expansion
(Rényi 1957).
The case 𝛿 = 1/2 corresponds to the symmetric
beta-expansion by (Akiyama-Scheicher 2007).
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Generalised beta-substitution

Define the left-continuous counterpart of 𝑇𝜀,𝛽:

𝑇∗𝛽,𝛿 ∶ (−𝛿, 1 − 𝛿] ⟶ (−𝛿, 1 − 𝛿], 𝛾 ⟼ 𝛽𝛾 + ⌊−𝛽𝛾 + 1 − 𝛿⌋

and for 𝛾 ∈ (−𝛿, 1 − 𝛿] let 𝑑∗𝛽,𝛿(𝛾) ∶= (𝑑∗𝑗)𝑗≥1 with

𝑑∗𝑗 = 𝛽𝑇∗𝛽,𝛿
𝑗−1

(𝛾) − 𝑇∗𝛽,𝛿
𝑗
(𝛾).

We suppose that
▶ 𝑑𝛽,𝛿(−𝛿) is eventually periodic and consist of

non-positive integers only;
▶ 𝑑∗𝛽,𝛿(1 − 𝛿) is eventually periodic and consist of

non-negative integers only.
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Generalised beta-substitution
W.l.o.g we may assume that 𝑑𝛿,𝛽(−𝛿) and 𝑑∗𝛿,𝛽(1 − 𝛿) have
the same pre-period and the same period:

𝑑𝛽,𝛿(−𝛿) = −ℓ1,… ,−ℓ𝑞, �−ℓ𝑞+1,… ,−ℓ𝑞+𝑝�
𝜔
,

𝑑∗𝛽,𝛿(1 − 𝛿) = 𝑟1,… , 𝑟𝑞, � 𝑟𝑞+1,… , −𝑟𝑞+𝑝�
𝜔
,

ℓ1, … , ℓ𝑞+𝑝, 𝑟1, 𝑟𝑞+𝑝 ≥ 0.
We define the substitution 𝜎𝛽,𝛿 over the alphabet
𝒜 = {1, … ,m = 𝑝 + 𝑞} and the coding prescription 𝑐𝛿 wrt
𝜎𝛽,𝛿.

𝜎𝛽,𝛿(𝑥) =�

1⋯ 1���
𝑟𝑥

(x+ 1) 1⋯ 1���
ℓ𝑥

if x ∈ {1, … ,m− 1},

1⋯ 1���
𝑟𝑥

(𝑞 + 1) 1⋯ 1���
ℓ𝑥

if x = m,

𝑐𝛿(x) ={−ℓ𝑥, … , 𝑟𝑥}.
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Generalised beta-expansions

Theorem
The substitution 𝜎𝛽,𝛿 is primitive and the dominant root
coincides with 𝛽, i.e 𝜃 = 𝛽. If we normalize the left
eigenvector 𝐯 such that we have 𝜆(1) = 1 (i.e. the first entry
of 𝐯 equals 1) then
▶ 𝐼(1) = [−𝛿, 0] and for each 𝛾 ∈ ̃𝐼(1) the 𝛽, 𝛿−expansion

coincides with the (𝜎𝛽,𝛿, 𝑐𝛿, 1) expansion;
▶ 𝐼(1) = [0, 1 − 𝛿] and for each 𝛾 ∈ ̃𝐼(1) the

𝛽, 𝛿−expansion coincides with the (𝜎𝛽,𝛿, 𝑐𝛿, 1) expansion.

-
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Example

Let 𝛽 be the dominant root of 𝑡3 − 2𝑡2 − 1 and 𝛿 = 0.

𝑑𝛽,0(0) =(0)
𝜔 = (0, 0, 0)𝜔

𝑑∗𝛽,0(1) =(2, 0, 0)
𝜔

We define

𝜎𝛽,0 ∶1 ↦ 112 𝑐0 ∶1 ↦ {0, 1, 2}

2 ↦ 3 2 ↦ {0}

3 ↦ 1 3 ↦ {0}

For each 𝛾 ∈ [0, 1) the (𝛽, 0)−expansions corresponds to the
(𝜎𝛽,0, 𝑐0, 1) expansion (cf. Fabre 1995).
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(𝜎𝛽,0, 𝑐0, 1) expansion (cf. Fabre 1995).
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Example
Let 𝛽 be the dominant root of 𝑡3 − 2𝑡2 − 1 and 𝛿 = 1/2.

𝑑𝛽,1/2(−1/2) = = (−1, 0, 0)𝜔

𝑑∗𝛽,1/2(
1/2) =(1, 0, 0)𝜔

We define

𝜎𝛽,1/2 ∶1 ↦ 121 𝑐1/2 ∶1 ↦ {−1, 0, 1}

2 ↦ 3 2 ↦ {0}

3 ↦ 1 3 ↦ {0}

For each 𝛾 ∈ [0, 1/2) the (𝛽, 1/2)−expansions corresponds to
the (𝜎𝛽,0, 𝑐1/2, 1) expansion.
For each 𝛾 ∈ [−1/2, 0) the (𝛽, 1/2)−expansions corresponds to
the (𝜎𝛽,0, 𝑐1/2, 1) expansion.
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Example
Let 𝛽 = 5+√21

2
and 𝛿 = 3

𝛽+1
.

𝑑𝛽,𝛿(−𝛿) = −2, (−2,−1)𝜔

𝑑∗𝛽,𝛿(1 − 𝛿) = (2, 1)𝜔 = 2, (1, 2)𝜔

We define

𝜎𝛽,𝛿 ∶1 ↦ 11211 𝑐𝛿 ∶1 ↦ {−2,−1, 0, 1, 2}

2 ↦ 1311 2 ↦ {−2,−1, 0, 1}

3 ↦ 1121 3 ↦ {−1, 0, 1, 2}

For each 𝛾 ∈ [0, 1 − 𝛿) the (𝛽, 𝛿)−expansions corresponds to
the (𝜎𝛽,𝛿, 𝑐𝛿, 1) expansion.
For each 𝛾 ∈ [−𝛿, 0) the (𝛽, 𝛿)−expansions corresponds to
the (𝜎𝛽,𝛿, 𝑐𝛿, 1) expansion.
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The end

Thank you for your attention!
Thank you for your interest!
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