

Substitutive number systems

Paul Surer

University of Natural Resources and Life Sciences Vienna Department of Integrative Biology and Biodiversity Research Institute of Mathematics

Utrecht, June 2024

We are interested in a generalisation of the Dumont-Thomas numeration.

We are interested in a generalisation of the Dumont-Thomas numeration.

▶ The (classical) Dumont-Thomas numeration

We are interested in a generalisation of the Dumont-Thomas numeration.

- ▶ The (classical) Dumont-Thomas numeration
- ▶ A generalisation of the Dumont-Thomas numeration

We are interested in a generalisation of the Dumont-Thomas numeration.

- ▶ The (classical) Dumont-Thomas numeration
- ▶ A generalisation of the Dumont-Thomas numeration
- ▶ Relations with (generalised) beta-expansions

Letters and words

We let denote

 \triangleright $\mathcal{A} := \{1, 2, ..., m\}$ a finite set (alphabet);

$$
\blacktriangleright
$$
 \mathcal{A}^* the finite words over \mathcal{A} ;

 $▶ \varepsilon \in \mathcal{A}^*$ the empty word;

For a word $X = x_1, ..., x_n \in \mathcal{A}^*$ and a letter $y \in \mathcal{A}$ we define

$$
|X|_{y} := #\{j \in \{1, ..., n\}|x_{j} = y\}
$$

$$
|X| := \sum_{y \in \mathcal{A}} |X|_{y},
$$

$$
\mathbf{I}(X) := (|X|_{1}, |X|_{2}, ..., |X|_{m})^{T} \in \mathbb{Z}^{m}.
$$

Substitutions

- $▶$ Let $\sigma : \mathcal{A}^* \mapsto \mathcal{A}^*$ be a non-erasing morphism (substitution).
- \blacktriangleright Let $M_\sigma := (\mathbf{l}(\sigma(1)), \mathbf{l}(\sigma(2)), \dots, \mathbf{l}(\sigma(m))) \in \mathbb{R}^{m \times m}$ be the incidence matrix. We have $\mathbf{l}(\sigma(W)) = M_{\zeta} \cdot \mathbf{l}(X)$ for all $X \in A^*$
- \blacktriangleright We require σ to be primitive: there exists a positive integer n such that M_{ζ}^n is strictly positive.
- \triangleright We denote by θ the (real) Perron-Frobenius eigenvalue of M_{σ} (ie., $\theta > 1$) and by $\mathbf{v} \in \mathbb{Q}(\theta)^m$ a strictly positive left eigenvector with respect to θ .

 \blacktriangleright We define

$$
\lambda(X): \mathcal{A}^* \longrightarrow \mathbb{R}, X \longmapsto \langle \mathbf{l}(X), \mathbf{v} \rangle.
$$

Let σ be a substitution over the alphabet A. We define the following graph known as *prefix graph*.

 \blacktriangleright The set of vertices is \mathcal{A} .

Let σ be a substitution over the alphabet A. We define the following graph known as *prefix graph*.

- \blacktriangleright The set of vertices is \mathcal{A} .
- ▶ For each $x \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(x) = x_1x_2 \cdots x_kx_{k+1} \cdots x_n$

:

Let σ be a substitution over the alphabet A. We define the following graph known as *prefix graph*.

- \blacktriangleright The set of vertices is \mathcal{A} .
- ▶ For each $x \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(x) = x_1 x_2 \cdots x_k x_{k+1} \cdots x_n$: $\overrightarrow{P_{1}}$ For each $k \in \{0, ..., n-1\}$ we have an edge $x \xrightarrow{(P_k x_{k+1})} x_{k+1}.$

Let σ be a substitution over the alphabet A. We define the following graph known as *prefix graph*.

The set of vertices is
$$
\mathcal{A}
$$
.

For each
$$
x \in \mathcal{A}
$$
 the outgoing edges are defined as follows:
\nLet $\sigma(x) = x_1x_2 \cdots x_k x_{k+1} \cdots x_n$:
\nFor each $k \in \{0, ..., n-1\}$ we have an edge
\n $x \xrightarrow{(P_k, x_{k+1})} x_{k+1}$.

For a vertex $x \in \mathcal{A}$ the outgoing edges can be ordered with respect to ≺:

$$
(D_1, y_1) \prec (D_2, y_2) \Leftrightarrow |D_1| \prec |D_2| \quad (\Leftrightarrow D_1 \text{ is a prefix of } D_2).
$$

Let σ be a substitution over the alphabet A. We define the following graph known as *prefix graph*.

The set of vertices is
$$
\mathcal{A}
$$
.

For each
$$
x \in \mathcal{A}
$$
 the outgoing edges are defined as follows:
\nLet $\sigma(x) = x_1x_2 \cdots x_k x_{k+1} \cdots x_n$:
\nFor each $k \in \{0, ..., n-1\}$ we have an edge
\n $x \xrightarrow{(P_k, x_{k+1})} x_{k+1}$.

For a vertex $x \in \mathcal{A}$ the outgoing edges can be ordered with respect to ≺:

$$
(D_1, y_1) \prec (D_2, y_2) \Leftrightarrow |D_1| \prec |D_2| \quad (\Leftrightarrow D_1 \text{ is a prefix of } D_2).
$$

The maximal vertex is $(x_1 \cdots x_{n-1}, x_n)$.

Dumont-Thomas numeration

Theorem (Dumont-Thomas, 1989)

Let $x \in \mathcal{A}$. Then for each $\gamma \in [0; \lambda(x))$ there exists a unique walk in the prefix graph $(D_j, \mathsf{x}_j)_{j \geq 1}$ that starts in x such that (D_j, x_j) is not the maximal edge for infinitely many indices $i \in \mathbb{N}$ that satisfies

$$
\gamma = \sum_{j\geq 1} \lambda(D_j) \, \theta^{-j} \qquad (\sigma, x) - \text{expansion}.
$$

Inverse Letters

We let denote

\n- $$
\overline{\mathcal{A}} := \{ \overline{1}, \overline{2}, \dots, \overline{m} \}
$$
 the set of "inverse letters";
\n- $\overline{\mathcal{A}}^*$ the finite words over $\overline{\mathcal{A}}$;
\n

For a word $X = x_1, ..., x_n \in \mathcal{A}^*$ we let

$$
\overline{X} := \overline{\mathsf{x}}_n, \dots, \overline{\mathsf{x}}_1.
$$

For a word $X = \mathsf{x}_1, \dots, \mathsf{x}_n \in \overline{\mathcal{A}}^*$ and a letter $\mathsf{y} \in \mathcal{A}$ we define

$$
|X|_{y} := -\# \{ j \in \{1, ..., n\} | x_{j} = \bar{y} \}
$$

$$
|X| := \sum_{y \in \mathcal{A}} |X|_{y},
$$

$$
\mathbf{l}(X) := (|X|_{1}, |X|_{2}, ..., |X|_{m})^{T} \in \mathbb{Z}^{m}.
$$

Paul Surer [A generalised Dumont-Thomas numeration](#page-13-0) 7 / 26

Coding prescriptions

Coding Prescription

A coding prescription (with respect to σ) is a function c with domain A that assigns to each letter a finite set of integers such that

- \triangleright for all $x \in \mathcal{A}$ we have $-|\sigma(x)| < k < |\sigma(x)|$ for all $k \in c(\mathsf{x})$.
- \triangleright $c(x)$ is a complete set of representatives modulo $|\sigma(x)|$ for all $x \in \mathcal{A}$, that is $\#c(x) = |\sigma(x)|$ and for all $k, k' \in c(x)$ with $k \neq k'$ we have $k \not\equiv k'$ mod $|\sigma(x)|$;

Coding prescriptions

Coding Prescription

A coding prescription (with respect to σ) is a function c with domain A that assigns to each letter a finite set of integers such that

- \triangleright for all $x \in \mathcal{A}$ we have $-|\sigma(x)| < k < |\sigma(x)|$ for all $k \in c(\mathsf{x})$.
- \triangleright $c(x)$ is a complete set of representatives modulo $|\sigma(x)|$ for all $x \in \mathcal{A}$, that is $\#c(x) = |\sigma(x)|$ and for all $k, k' \in c(x)$ with $k \neq k'$ we have $k \not\equiv k'$ mod $|\sigma(x)|$;

For a primitive substitution σ and a coding prescription c wrt, σ we call the pair (σ, c) a setting.

With a setting (σ, c) we associate the directed graph $G_{\sigma, c}$:

▶ The set of vertices is $A \cup \overline{A}$.

With a setting (σ, c) we associate the directed graph $G_{\sigma, c}$:

- **▶ The set of vertices is** $A \cup \overline{A}$.
- ▶ For each $x \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(x) = x_1x_2 \cdots x_kx_{k+1} \cdots x_n$:

With a setting (σ, c) we associate the directed graph $G_{\sigma, c}$:

The set of vertices is
$$
A \cup \overline{A}
$$
.

▶ For each $x \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(x) = x_1 x_2 \cdots x_k$ P_k $x_{k+1} \cdots x_n$: For each $k \in c(x)$, $k \ge 0$ we have an edge $x \xrightarrow{(P_k x_{k+1})} x_{k+1}.$

With a setting (σ, c) we associate the directed graph $G_{\sigma, c}$:

- \triangleright The set of vertices is $\mathcal{A} \cup \overline{\mathcal{A}}$.
- ▶ For each $x \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(x) = x_1 x_2 \cdots x_k x_{k+1} \cdots x_n$: $\overrightarrow{P_{k}}$ For each $k \in c(x)$, $k \ge 0$ we have an edge $x \xrightarrow{(P_k, x_{k+1})} x_{k+1}.$

For each $k \in c(x)$, $k > 0$ we have an edge x $\frac{(P_k, \overline{x}_k)}{\overline{x}_k}$

With a setting (σ, c) we associate the directed graph $G_{\sigma, c}$:

- \triangleright The set of vertices is $\mathcal{A} \cup \overline{\mathcal{A}}$.
- ▶ For each $x \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(x) = x_1 x_2 \cdots x_k$ P_k $x_{k+1} \cdots x_n$: For each $k \in c(x)$, $k \ge 0$ we have an edge $x \xrightarrow{(P_k, x_{k+1})} x_{k+1}.$

For each $k \in c(x)$, $k > 0$ we have an edge $x \xrightarrow{(P_k, \bar{x}_k)} \bar{x}_k$.

▶ For each $\overline{x} \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(x) = x_{-n} \cdots x_{k-1}x_k \cdots x_{-2}x_{-1}$:

With a setting (σ, c) we associate the directed graph $G_{\sigma, c}$:

- \triangleright The set of vertices is $\mathcal{A} \cup \mathcal{A}$.
- ▶ For each $x \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(x) = x_1 x_2 \cdots x_k$ P_k $x_{k+1} \cdots x_n$: For each $k \in c(x)$, $k \ge 0$ we have an edge $x \xrightarrow{(P_k, x_{k+1})} x_{k+1}.$

For each $k \in c(x)$, $k > 0$ we have an edge $x \xrightarrow{(P_k, \bar{x}_k)} \bar{x}_k$.

▶ For each $\overline{x} \in \overline{\mathcal{A}}$ the outgoing edges are defined as follows: Let $\sigma(x) = x_{-n} \cdots x_{k-1} x_k \cdots x_{-2} x_{-1}$: S_{ν} For each $k \in c(x)$, $k \leq 0$ we have an edge

$$
\frac{\overline{S_k} \overline{X_{k-1}}}{\overline{X} \xrightarrow{\overline{S_k} \overline{X_{k-1}}} \overline{X}_{k-1}}.
$$

With a setting (σ, c) we associate the directed graph $G_{\sigma, c}$:

- \triangleright The set of vertices is $\mathcal{A} \cup \mathcal{A}$.
- ▶ For each $x \in \mathcal{A}$ the outgoing edges are defined as follows: Let $\sigma(x) = x_1 x_2 \cdots x_k$ P_k $x_{k+1} \cdots x_n$: For each $k \in c(x)$, $k \ge 0$ we have an edge $x \xrightarrow{(P_k, x_{k+1})} x_{k+1}.$

For each $k \in c(x)$, $k > 0$ we have an edge $x \xrightarrow{(P_k, \bar{x}_k)} \bar{x}_k$.

▶ For each $\overline{x} \in \overline{\mathcal{A}}$ the outgoing edges are defined as follows: Let $\sigma(x) = x_{-n} \cdots x_{k-1} x_k \cdots x_{-2} x_{-1}$: S_{ν}

For each $k \in c(x)$, $k \le 0$ we have an edge $\overline{\mathsf{x}} \xrightarrow{(S_k, \overline{\mathsf{x}}_{k-1})} \overline{\mathsf{x}}_{k-1}.$

For each $k \in c(x)$, $k < 0$ we have an edge $\overline{x} \xrightarrow{(S_k, x_k)} x_k$.

Ordering of edges

We define \prec on the outgoing edges of a vertex $x \in \mathcal{A} \cup \overline{A}$ of $G_{\sigma,c}$:

$$
(D_1,y_1) \prec (D_2,y_2) \Longleftrightarrow \begin{cases} |D_1| < |D_2| & \text{if } D_1 \neq D_2, \\ |y_1| < |y_2| & \text{if } D_1 = D_2. \end{cases}
$$

$\sigma: 1 \mapsto 112.2 \mapsto 3.3 \mapsto 1$ $c_0: 1 \mapsto \{0, 1, 2\}, 2 \mapsto \{0\}, 3 \mapsto \{0\}$ $c_1: 1 \mapsto \{-2, -1, 0\}, 2 \mapsto \{0\}, 3 \mapsto \{0\}$ $c_2: 1 \mapsto \{-1, 0, 1\}, 2 \mapsto \{0\}, 3 \mapsto \{0\}$ $c_3: 1 \mapsto \{-2, 0, 2\}, 2 \mapsto \{0\}, 3 \mapsto \{0\}$

Paul Surer **A** generalised Dumont-Thomas numeration 11 / 26

$\sigma: 1 \mapsto 112.2 \mapsto 3.3 \mapsto 1$ $c_0: 1 \mapsto \{0, 1, 2\}, 2 \mapsto \{0\}, 3 \mapsto \{0\}$ $c_1: 1 \mapsto \{-2, -1, 0\}, 2 \mapsto \{0\}, 3 \mapsto \{0\}$ $c_2: 1 \mapsto \{-1, 0, 1\}, 2 \mapsto \{0\}, 3 \mapsto \{0\}$ $c_3: 1 \mapsto \{-2, 0, 2\}, 2 \mapsto \{0\}, 3 \mapsto \{0\}$

Paul Surer **A** generalised Dumont-Thomas numeration 11 / 26

Induced sets

We are interested in the (infinite) walks on $G_{\sigma,c}$ and define for each $x \in \mathcal{A} \cup \overline{A}$

$$
I(x) = \left\{ \sum_{j\geq 1} \lambda(D_j) \theta^{-j} : (D_j, x_j) \text{ is a walk that starts in } x \right\}.
$$

The set list $\{I(x): x \in \mathcal{A} \cup \overline{A}\}$ is fixed by a graph directed iterated function system.

Induced sets

We are interested in the (infinite) walks on $G_{\sigma,c}$ and define for each $x \in \mathcal{A} \cup \overline{A}$

$$
I(x) = \left\{ \sum_{j\geq 1} \lambda(D_j) \theta^{-j} : (D_j, x_j) \text{ is a walk that starts in } x \right\}.
$$

The set list $\{I(x) : x \in \mathcal{A} \cup \overline{A}\}$ is fixed by a graph directed iterated function system.

For all $x \in \mathcal{A}$ we have

$$
I(x) \subset [0, \lambda(x)],
$$

$$
I(\overline{x}) \subset [-\lambda(x), 0].
$$

The exact structure of $I(x)$ is determined by the coding prescription.

Paul Surer **A** generalised Dumont-Thomas numeration 12 / 26

Special types of settings

Continuous setting We say that the setting (σ, c) is continuous if

 $\forall x \in \mathcal{A} : c(x)$ is a set of consecutive integers. (CS)

Special types of settings

Continuous setting We say that the setting (σ, c) is continuous if

 $\forall x \in \mathcal{A} : c(x)$ is a set of consecutive integers. (CS) Even setting We say that the setting (σ, c) is even if

> $\forall x \in \mathcal{A}: |\sigma(x)| \equiv 1 \mod 2$ and $c(x) \subset 2\mathbb{Z}$. (ES)

Structure of $I(x)$

Theorem

Let σ be a primitive substitution and c be a coding prescription wrt. σ . Then the following items hold for all $x \in \mathcal{A}$.

If [\(ES\)](#page-30-0) holds then we have $I(x) = [0, \lambda(x)]$ and $I(\overline{x}) = [-\lambda(x), 0].$

Structure of $I(x)$

Theorem

Let σ be a primitive substitution and c be a coding prescription wrt. σ . Then the following items hold for all $x \in \mathcal{A}$.

- If [\(ES\)](#page-30-0) holds then we have $I(x) = [0, \lambda(x)]$ and $I(\overline{x}) = [-\lambda(x), 0].$
- ▶ $I(x) \cup (\lambda(x) + I(\overline{x})) = [0, \lambda(x)]$ where the union is disjoint wrt. the 1-dimensional Lebesgue measure if and only if [\(ES\)](#page-30-0) does not hold.

Structure of $I(x)$

Theorem

Let σ be a primitive substitution and c be a coding prescription wrt. σ . Then the following items hold for all $x \in \mathcal{A}$.

- If [\(ES\)](#page-30-0) holds then we have $I(x) = [0, \lambda(x)]$ and $I(\overline{x}) = [-\lambda(x), 0].$
- ▶ $I(x) \cup (\lambda(x) + I(\overline{x})) = [0, \lambda(x)]$ where the union is disjoint wrt. the 1-dimensional Lebesgue measure if and only if [\(ES\)](#page-30-0) does not hold.
- If [\(CS\)](#page-30-1) holds then $I(x)$ and $I(\bar{x})$ are intervals.

$\sigma: 1 \mapsto 1121123, 2 \mapsto 1, 3 \mapsto 112$

 $\sigma: 1 \mapsto 1121123, 2 \mapsto 1, 3 \mapsto 112$

Paul Surer [A generalised Dumont-Thomas numeration](#page-13-0) 16 / 26

Generalised Dumont-Thomas numeration

If $I(x) = [\alpha, \beta]$ is an interval then we let denote $\tilde{I}(x) = [\alpha, \beta)$ the corresponding right-open interval.

Generalised Dumont-Thomas numeration

If $I(x) = [\alpha, \beta]$ is an interval then we let denote $\tilde{I}(x) = [\alpha, \beta)$ the corresponding right-open interval.

Theorem

Let (σ, c) satisfy [\(CS\)](#page-30-1) of [\(ES\)](#page-30-0) and $x \in \mathcal{A} \cup \overline{\mathcal{A}}$. Then for each $\gamma \in \tilde I(\mathsf{x})$ there exists a unique walk $(D_j, \mathsf{x}_j)_{j \geq 1}$ in $G(\sigma, c)$ that starts in x such that $(D_j, {\sf x}_j)$ is not the maximal edge for infinitely many indices $j \in \mathbb{N}$ that satisfies

$$
\gamma = \sum_{j\geq 1} \lambda(D_j) \, \theta^{-j} \qquad (\sigma, c, x) - \text{expansion}.
$$

Generalised Dumont-Thomas numeration

If $I(x) = [\alpha, \beta]$ is an interval then we let denote $\tilde{I}(x) = [\alpha, \beta]$ the corresponding right-open interval.

Theorem

Let (σ, c) satisfy [\(CS\)](#page-30-1) of [\(ES\)](#page-30-0) and $x \in \mathcal{A} \cup \mathcal{A}$. Then for each $\gamma \in \tilde I(\mathsf{x})$ there exists a unique walk $(D_j, \mathsf{x}_j)_{j \geq 1}$ in $G(\sigma, c)$ that starts in x such that $(D_j, {\sf x}_j)$ is not the maximal edge for infinitely many indices $j \in \mathbb{N}$ that satisfies

$$
\gamma = \sum_{j\geq 1} \lambda(D_j) \, \theta^{-j} \qquad (\sigma, c, x) - \text{expansion}.
$$

Let c_0 be the coding prescription (wrt. σ) that assigns to each letter a set of non-negative integers. Then for each $x \in \mathcal{A}$ we have $I(\bar{x}) = \{0\}$, $I(x) = [0, \lambda(x)]$ and for each $\gamma \in \tilde{I}(x)$ the (σ, c_0, x) −expansion corresponds to the (σ, x) −expansion.

Periodicity and Finiteness

Define the following properties for a setting (σ, c) that satisfies [\(CS\)](#page-30-1) or [\(ES\)](#page-30-0).

For all $x \in \mathcal{A} \cup \overline{\mathcal{A}}$, $y \in \tilde{I}(x) \cap \mathbb{Q}(\theta)$:

the (σ, c, x) −expansion is eventually periodic; (P)

For all $x \in \mathcal{A} \cup \overline{\mathcal{A}}, \gamma \in \tilde{I}(x) \cap \mathbb{Z}[\lambda(1, \lambda(2), ..., \lambda(m))]:$ the (σ, c, x) −expansion is a finite sum. (F)

Periodicity and Finiteness

Define the following properties for a setting (σ, c) that satisfies [\(CS\)](#page-30-1) or [\(ES\)](#page-30-0).

For all $x \in \mathcal{A} \cup \overline{\mathcal{A}}$, $\gamma \in \tilde{I}(x) \cap \mathbb{Q}(\theta)$:

the (σ, c, x) −expansion is eventually periodic; (P)

For all
$$
x \in \mathcal{A} \cup \overline{\mathcal{A}}, \gamma \in \tilde{I}(x) \cap \mathbb{Z}[\lambda(1, \lambda(2), ..., \lambda(m))]
$$
:
the (σ, c, x) –expansion is a finite sum. (F)

Theorem
Let
$$
(\sigma, c_1)
$$
 and (σ, c_2) satisfy (CS) of (ES). Then
 (σ, c_1) satisfies $(P) \Leftrightarrow (\sigma, c_2)$ satisfies (P) ,
 (σ, c_1) satisfies $(F) \Leftrightarrow (\sigma, c_2)$ satisfies (P) .

Generalised beta-expansion

Let $\delta \in [0, 1)$, $\beta > 1$ and define the generalised beta-transformation

$$
T_{\beta,\delta}:[-\delta,1-\delta)\longrightarrow[-\delta,1-\delta),\gamma\longmapsto \beta\gamma-[\beta\gamma+\delta].
$$

For $\gamma \in [-\delta, 1-\delta)$ let $d_{\beta,\delta}(\gamma) := (d_i)_{i \geq 1}$ with

$$
d_j = \beta T_{\beta,\delta}^{j-1}(\gamma) - T_{\beta,\delta}^j(\gamma).
$$

Then we have

$$
\gamma = \sum_{j\geq 1} d_j \beta^{-j} \qquad ((\beta, \delta) - \text{expansion}).
$$

Generalised beta-expansion

Let $\delta \in [0, 1)$, $\beta > 1$ and define the generalised beta-transformation

$$
T_{\beta,\delta}:[-\delta,1-\delta)\longrightarrow [-\delta,1-\delta),\gamma\longmapsto \beta\gamma-[\beta\gamma+\delta].
$$

For $\gamma \in [-\delta, 1-\delta)$ let $d_{\beta,\delta}(\gamma) := (d_i)_{i \geq 1}$ with

$$
d_j = \beta T_{\beta,\delta}^{j-1}(\gamma) - T_{\beta,\delta}^j(\gamma).
$$

Then we have

$$
\gamma = \sum_{j\geq 1} d_j \beta^{-j} \qquad ((\beta, \delta) - \text{expansion}).
$$

The case $\delta = 0$ corresponds to the (classical) beta-expansion (Rényi 1957). The case $\delta = 1/2$ corresponds to the symmetric beta-expansion by (Akiyama-Scheicher 2007).

Paul Surer [Relation with generalised beta-expansions](#page-42-0) 19 / 26

Generalised beta-substitution

Define the left-continuous counterpart of $T_{\varepsilon,\beta}$:

$$
T_{\beta,\delta}^* : (-\delta, 1 - \delta] \to (-\delta, 1 - \delta], \gamma \mapsto \beta \gamma + [-\beta \gamma + 1 - \delta]
$$

and for $\gamma \in (-\delta, 1 - \delta]$ let $d_{\beta,\delta}^*(\gamma) := (d_j^*)_{j \ge 1}$ with

$$
d_j^* = \beta T_{\beta,\delta}^*{}^{j-1}(\gamma) - T_{\beta,\delta}^*{}^{j}(\gamma).
$$

We suppose that

- \triangleright $d_{\beta,\delta}(-\delta)$ is eventually periodic and consist of non-positive integers only;
- \blacktriangleright $d^*_{\beta,\delta}(1-\delta)$ is eventually periodic and consist of non-negative integers only.

Generalised beta-substitution

W.l.o.g we may assume that $d_{\delta,\beta}(-\delta)$ and $d_{\delta,\beta}^*(1-\delta)$ have the same pre-period and the same period:

$$
d_{\beta,\delta}(-\delta) = -\ell_1, ..., -\ell_q, (-\ell_{q+1}, ..., -\ell_{q+p})^{\omega},
$$

$$
d_{\beta,\delta}^*(1-\delta) = r_1, ..., r_q, (-r_{q+1}, ..., -r_{q+p})^{\omega},
$$

 $\ell_1, ..., \ell_{q+p}, r_1, r_{q+p} \geq 0.$ We define the substitution $\sigma_{\beta,\delta}$ over the alphabet $\mathcal{A} = \{1, ..., m = p + q\}$ and the coding prescription c_{δ} wrt $\sigma_{\beta,\delta}$.

$$
\sigma_{\beta,\delta}(x) = \begin{cases}\n\frac{1 \cdots 1}{r_x}(x+1) \frac{1 \cdots 1}{\ell_x} & \text{if } x \in \{1, \dots, m-1\}, \\
\frac{1 \cdots 1}{r_x}(q+1) \frac{1 \cdots 1}{\ell_x} & \text{if } x = m, \\
c_{\delta}(x) = \{-\ell_x, \dots, r_x\}.\n\end{cases}
$$

Generalised beta-expansions

Theorem

The substitution $\sigma_{\beta,\delta}$ is primitive and the dominant root coincides with β , i.e $\theta = \beta$. If we normalize the left eigenvector **v** such that we have $\lambda(1) = 1$ (i.e. the first entry of \bf{v} equals 1) then

- ▶ $I(\overline{1}) = [-\delta, 0]$ and for each $\gamma \in \overline{I}(\overline{1})$ the β , δ -expansion coincides with the $(\sigma_{\beta,\delta}, c_{\delta}, \overline{1})$ expansion;
- ▶ $I(1) = [0, 1 \delta]$ and for each $\gamma \in \tilde{I}(1)$ the β , δ – expansion coincides with the $(\sigma_{\beta,\delta}, c_{\delta}, 1)$ expansion.

-

Let β be the dominant root of $t^3 - 2t^2 - 1$ and $\delta = 0$.

$$
d_{\beta,0}(0) = (0)^{\omega} = (0, 0, 0)^{\omega}
$$

$$
d_{\beta,0}^{*}(1) = (2, 0, 0)^{\omega}
$$

Let β be the dominant root of $t^3 - 2t^2 - 1$ and $\delta = 0$.

$$
d_{\beta,0}(0) = (0)^{\omega} = (0, 0, 0)^{\omega}
$$

$$
d_{\beta,0}^{*}(1) = (2, 0, 0)^{\omega}
$$

We define

$$
\sigma_{\beta,0} : 1 \mapsto 112
$$
\n
$$
2 \mapsto 3
$$
\n
$$
3 \mapsto 1
$$
\n
$$
c_0 : 1 \mapsto \{0, 1, 2\}
$$
\n
$$
2 \mapsto \{0\}
$$
\n
$$
3 \mapsto \{0\}
$$

Let β be the dominant root of $t^3 - 2t^2 - 1$ and $\delta = 0$.

$$
d_{\beta,0}(0) = (0)^{\omega} = (0, 0, 0)^{\omega}
$$

$$
d_{\beta,0}^{*}(1) = (2, 0, 0)^{\omega}
$$

We define

$$
\sigma_{\beta,0} : 1 \mapsto 112 \qquad c_0 : 1 \mapsto \{0, 1, 2\} \n2 \mapsto 3 \qquad 2 \mapsto \{0\} \n3 \mapsto 1 \qquad 3 \mapsto \{0\}
$$

For each $\gamma \in [0, 1)$ the $(\beta, 0)$ −expansions corresponds to the $(\sigma_{\beta,0}, c_0, 1)$ expansion (cf. Fabre 1995).

Let β be the dominant root of $t^3 - 2t^2 - 1$ and $\delta = 1/2$.

$$
d_{\beta,1/2}(-1/2) = ((-1,0,0)^{\omega})
$$

$$
d_{\beta,1/2}^*(1/2) = (1,0,0)^{\omega}
$$

Let β be the dominant root of $t^3 - 2t^2 - 1$ and $\delta = 1/2$.

$$
d_{\beta,1/2}(-1/2) = ((-1,0,0)^{\omega})
$$

$$
d_{\beta,1/2}^*(1/2) = (1,0,0)^{\omega}
$$

We define

$$
\sigma_{\beta,1/2}:1 \mapsto 121 \qquad c_{1/2}:1 \mapsto \{-1,0,1\}
$$

2 \mapsto 3 \qquad 2 \mapsto \{0\}
3 \mapsto 1 \qquad 3 \mapsto \{0\}

Let β be the dominant root of $t^3 - 2t^2 - 1$ and $\delta = 1/2$.

$$
d_{\beta,1/2}(-1/2) = ((-1,0,0)^{\omega})
$$

$$
d_{\beta,1/2}^*(1/2) = (1,0,0)^{\omega}
$$

We define

For each γ ∈ [0, 1/2) the $(\beta, \frac{1}{2})$ –expansions corresponds to the $(\sigma_{\beta,0},c_{1/2},1)$ expansion. For each $\gamma \in [-1/2, 0)$ the $(\beta, 1/2)$ −expansions corresponds to the $(\sigma_{\beta,0},c_{1/2},1)$ expansion.

Let
$$
\beta = \frac{5 + \sqrt{21}}{2}
$$
 and $\delta = \frac{3}{\beta + 1}$.
\n
$$
d_{\beta, \delta}(-\delta) = -2, (-2, -1)^{\omega}
$$
\n
$$
d_{\beta, \delta}^*(1 - \delta) = (2, 1)^{\omega} = 2, (1, 2)^{\omega}
$$

Let
$$
\beta = \frac{5 + \sqrt{21}}{2}
$$
 and $\delta = \frac{3}{\beta + 1}$.
\n
$$
d_{\beta, \delta}(-\delta) = -2, (-2, -1)^{\omega}
$$
\n
$$
d_{\beta, \delta}^*(1 - \delta) = (2, 1)^{\omega} = 2, (1, 2)^{\omega}
$$

We define

$$
\sigma_{\beta,\delta} : 1 \mapsto 11211 \qquad c_{\delta} : 1 \mapsto \{-2, -1, 0, 1, 2\}
$$

\n
$$
2 \mapsto 1311 \qquad 2 \mapsto \{-2, -1, 0, 1\}
$$

\n
$$
3 \mapsto 1121 \qquad 3 \mapsto \{-1, 0, 1, 2\}
$$

Let
$$
\beta = \frac{5 + \sqrt{21}}{2}
$$
 and $\delta = \frac{3}{\beta + 1}$.
\n
$$
d_{\beta, \delta}(-\delta) = -2, (-2, -1)^{\omega}
$$
\n
$$
d_{\beta, \delta}^*(1 - \delta) = (2, 1)^{\omega} = 2, (1, 2)^{\omega}
$$

We define

For each $\gamma \in [0, 1-\delta)$ the (β, δ) –expansions corresponds to the $(\sigma_{\beta,\delta}, c_{\delta}, 1)$ expansion. For each $\gamma \in [-\delta, 0)$ the (β, δ) –expansions corresponds to the $(\sigma_{\beta,\delta}, c_{\delta}, \overline{1})$ expansion.

The end

Thank you for your attention! Thank you for your interest!