Fiber denseness of intermediate β -shifts

Yun Sun^{*}, Bing Li^{*}, Yiming Ding[†]

*School of Mathematics, South China University of Technology, Guangzhou, 510461, China,

[†]College of Science, Wuhan University of Science and Technology, Wuhan, 430081, China

1. Intermediate β -shifts

Let $T_{\beta,\alpha}(x) = \beta x + \alpha \pmod{1}$ with one discontinuity, where $x \in [0,1]$ and

 $(\beta, \alpha) \in \Delta := \{ (\beta, \alpha) \in \mathbb{R}^2 : \beta \in (1, 2) \text{ and } 0 < \alpha < 2 - \beta \}$

Theorem (Li, Sahlsten, Samuel & Steiner, 2019): \mathcal{F} is dense in Δ . Theorem (Bruin, Carminati & Kalle, 2017): Let β be a multinacci number of order k, then (β, α) has the same matching at time k for all $(\beta, \alpha) \in \Delta(\beta)$. Theorem (Quackenbush, Samuel & West, 2020):

Kneading invariants: Denote the critical point $c = (1-\alpha)/\beta$. The orbits of points in [0,1] under $T_{\beta,\alpha}$ can be coded by elements of $\{0, 1\}^{\mathbb{N}}$. The kneading sequence of a point x, $\tau_{\beta,\alpha}(x)$, is defined to be $(\epsilon_1 \epsilon_2 \cdots)$, where

 $\epsilon_i = 0$ if $T^{i-1}_{\beta,\alpha}(x) < c$, and $\epsilon_i = 1$ if $T^{i-1}_{\beta,\alpha}(x) > c$.

When x is a preimage of c, x has two sequences

$$\tau_{\beta,\alpha}(x+) = \lim_{y \downarrow x} \tau_{\beta,\alpha}(y), \qquad \quad \tau_{\beta,\alpha}(x-) = \lim_{y \uparrow x} \tau_{\beta,\alpha}(y),$$

where the y's run through points of [0,1] which are not the preimages of c. Let $k_+ = \tau_{\beta,\alpha}(c+)$ and $k_- = \tau_{\beta,\alpha}(c-)$, then (k_+, k_-) are called the kneading invariants of $T_{\beta,\alpha}$. Intermediate β -shift: Let $\sigma: \{0,1\}^{\mathbb{N}} \bigcirc$ be the left-shift map. Theorem (Hubbard & Sparrow, 1990)

 $\Omega_{\beta,\alpha} = \left\{ \omega \in \{0,1\}^{\mathbb{N}} \colon \sigma(k_+) \preceq \sigma^n(\omega) \preceq \sigma(k_-) \text{ for all } n \in \mathbb{N}_0 \right\}$

When β is a multinacci number, $\mathcal{F}(\beta)$ is dense in $\Delta(\beta)$. Question 2: What is the relationship between SFT and matching? Do we still have fiber denseness of $\mathcal{F}(\beta)$ for general β ?

3. Results on fiber denseness

 $\begin{cases} \Delta(k_{+}) := \{(\beta, \alpha) \in \Delta : k_{+} \text{ is periodic and } \tau_{\beta,\alpha}(\frac{1-\alpha}{\beta}+) = k_{+}\}, \\ \Delta(k_{-}) := \{(\beta, \alpha) \in \Delta : k_{-} \text{ is periodic and } \tau_{\beta,\alpha}(\frac{1-\alpha}{\beta}-) = k_{-}\}, \\ \mathcal{K} := \{(\beta, \alpha) \in \Delta : \tau_{\beta,\alpha}(\frac{1-\alpha}{\beta}+) \text{ and } \tau_{\beta,\alpha}(\frac{1-\alpha}{\beta}-) \text{ are symmetric}\}, \\ \mathcal{M} := \{(\beta, \alpha) \in \Delta : T_{\beta,\alpha} \text{ has matching}\}, \\ \mathcal{F}(k_{\pm}) := \Delta(k_{\pm}) \cap \mathcal{F}, \ \mathcal{M}(\beta) := \Delta(\beta) \cap \mathcal{M}, \\ I(\beta, \alpha) := \{(\beta, \alpha') \in \Delta(\beta) : T_{\beta,\alpha'} \text{ has same matching as } T_{\beta,\alpha}\}, \\ \mathcal{F}(\beta, \alpha) := I(\beta, \alpha) \cap \mathcal{F}. \end{cases}$

Theorem 1: Let k_+ or k_- be self-admissible, then $\mathcal{F}(k_+)$ is dense in the fiber $\Delta(k_+)$; $\mathcal{F}(k_-)$ is dense in the fiber $\Delta(k_-)$. Theorem 2: $\mathcal{F} \subsetneq \mathcal{M}$ and $\overline{\mathcal{F}(\beta)} = \overline{\mathcal{M}(\beta)}$ for any $\beta \in (1, 2]$.

Subshift of finite type (SFT): A subshift Ω is said to be of finite type if there exists a finite set F of forbidden words.

Theorem (Parry, 1960): Let $\beta \in (1, 2)$.

The greedy β -shift ($\alpha = 0$) is a SFT if and only if k_{-} is periodic; the lazy β -shift ($\alpha = 2-\beta$) is a SFT if and only if k_{+} is periodic. Theorem (Li, Sahlsten & Samuel, 2016):

Let $\beta \in (1,2)$ and $\alpha \in (0,2-\beta)$, the intermediate β -shift $\Omega_{\beta,\alpha}$ is a SFT if and only if both k_+ and k_- are periodic.

Matching property: We say $T_{\beta,\alpha}$ has matching if there exists a finite integer n such that $T_{\beta,\alpha}^n(0+) = T_{\beta,\alpha}^n(1-)$. Self-admissible: k_+ and k_- satisfy that, $\sigma(k_+) \preceq \sigma^n(k_+)$ and $\sigma(k_-) \succeq \sigma^n(k_-)$ for all $n \ge 0$.

2. Questions

Theorem (Parry, 1960): The set of β such that its β -shift Ω_{β} is a SFT is dense in $(1, +\infty)$.

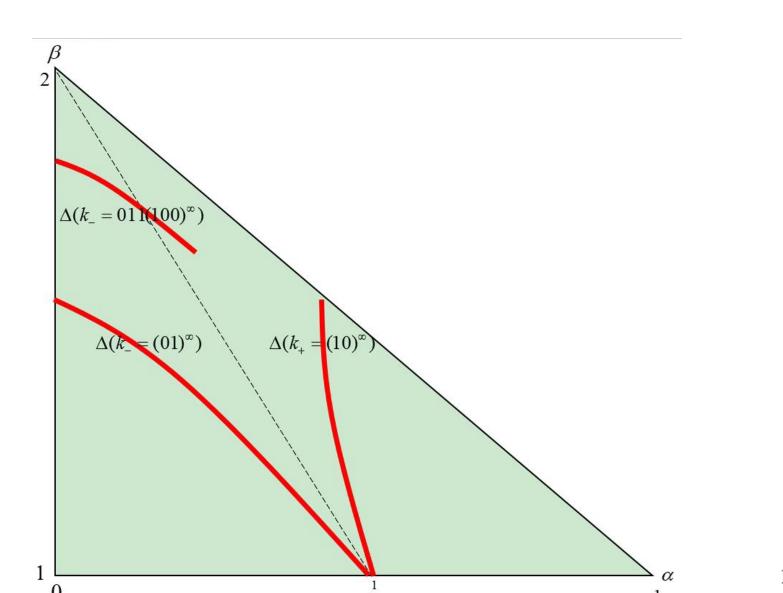
Remark 3: $\mathcal{F}(\beta) = \emptyset$ if and only if $\mathcal{M}(\beta) = \emptyset$.

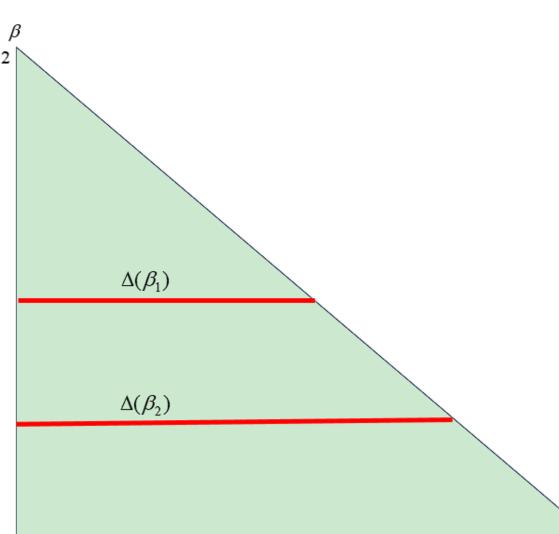
Theorem 4: Let $(\beta, \alpha) \in \mathcal{M}$ and $T^{m-1}_{\beta,\alpha}(0+) = T^{m-1}_{\beta,\alpha}(1-)$. Write $k_+ = (10a_3 \cdots a_m \cdots)$ and $k_- = (01b_3 \cdots b_m \cdots)$. Then 1. $I(\beta, \alpha)$ is a subinterval of $\Delta(\beta)$.

2. $\overline{\mathcal{F}(\beta, \alpha)} = \overline{I(\beta, \alpha)}.$

3. the endpoints of $I(\beta, \alpha)$ can be full characterized.

Corollary 5: Let $\alpha \in (0, 2 - \beta)$. $I(\beta, \alpha) = \Delta(\beta)$ if and only if β is a multinacci number.





Question 1: Can we extend Parry's classic result to $\Omega_{\beta,\alpha}$? For convenience, here we give some useful notations:

$$\begin{cases} \Delta(\beta) := \{(\beta, \alpha) \in \mathbb{R}^2 : 0 < \alpha < 2 - \beta\} \text{ with } \beta \in (1, 2) \text{ fixed}, \\ \mathcal{F} := \{(\beta, \alpha) \in \Delta : \Omega_{\beta, \alpha} \text{ is a SFT}\}, \\ \mathcal{F}(\beta) := \Delta(\beta) \cap \mathcal{F}, \end{cases}$$

Figure 1: General cases of $\Delta(k_{\pm})$, Cases

Cases of $\Delta(\beta)$.

4. Future work

(1) If β is a Pisot number, $\overline{\mathcal{F}(\beta)} = \overline{\mathcal{M}(\beta)} = \overline{\mathcal{S}(\beta)} = \overline{\Delta(\beta)}$? (2) In which case, $\mathcal{M}(\beta) = \overline{\mathcal{F}(\beta)} = \emptyset$?

Reference: Sun Y, Li B and Ding Y 2023 Fiber denseness of intermediate β -shifts of finite type *Nonlinearity* 36 5973-5997

Yun Sun: ysun@irif.fr

Numeration 2024, Utrecht, Netherlands