Fiber denseness of intermediate β -shifts of finite type

Yun Sun (joint work with Bing Li & Yiming Ding)

South China University of Technology

Numeration 2024 Utrecht, Netherland 04 June

• Backgrounds

• Main resluts

K ロ ト K 伊 ト K

重きす

≃

1. Backgrounds

4 **D** F ×. \rightarrow ×. э \rightarrow

Let $T_{\beta,\alpha}(x) = \beta x + \alpha$ (mod 1) for $x \in [0,1]$. Then $T_{\beta,\alpha}$ has one discontinuity if

 $(\beta, \alpha) \in \Delta := \{(\beta, \alpha) \in \mathbb{R}^2 \colon \beta \in (1,2) \text{ and } 0 < \alpha < 2-\beta\}$

Moreover, denote the critical point $c = (1-\alpha)/\beta$.

つひひ

Kneading sequence of a point x, $\tau_{\beta,\alpha}(x)$, is defined to be $(\epsilon_1 \epsilon_2 \cdots)$, where

$$
\epsilon_i=0 \qquad \text{if} \quad T_{\beta,\alpha}^{i-1}(x)c.
$$

When x is a preimage of c , x has two sequences

$$
\tau_{\beta,\alpha}(x+) = \lim_{y \downarrow x} \tau_{\beta,\alpha}(y), \qquad \tau_{\beta,\alpha}(x-) = \lim_{y \uparrow x} \tau_{\beta,\alpha}(y),
$$

where the y' s run through points of $[0,1]$ which are not preimages of c.

• Kneading invariants of $\Omega_{\beta,\alpha}$ is defined to be the pair of sequences $(k_{+}, k_{-}) = (\tau_{\beta}{}_{\alpha}(c+), \tau_{\beta}{}_{\alpha}(c-)).$

つへへ

Theorem (Hubbard & Sparrow, 1990)

$$
\Omega_{\beta,\alpha}=\left\{\omega\in\{0,1\}^{\mathbb{N}}\colon \sigma(k_+)\preceq \sigma^{\textit{n}}(\omega)\preceq \sigma(k_-)\text{ for all }n\in\mathbb{N}_0\right\}
$$

- \bullet SFT: A subshift Ω is said to be of finite type if it can be defined by a finite set of forbidden blocks.
- Theorem (Parry, 1960) Let $\beta \in (1, 2)$.
	- **1** The greedy *β*-shift ($\alpha = 0$) is a SFT if and only if $k_$ is periodic; **2** The lazy β -shift $(\alpha = 2 - \beta)$ is a SFT if and only if k_{+} is periodic.
- Theorem (Li, Sahlsten & Samuel, 2016) Let $\beta \in (1, 2)$ and $\alpha \in (0, 2 - \beta)$, the intermediate β -shift $\Omega_{\beta \alpha}$ is a SFT if and only if both k_+ and k_- are periodic.

Questions

Notations:

$$
\begin{cases}\n\Delta(\beta) := \{ (\beta, \alpha) \in \mathbb{R}^2 : 0 < \alpha < 2 - \beta \} \text{ where } \beta \in (1, 2) \text{ is fixed,} \\
\mathcal{F} := \{ (\beta, \alpha) \in \Delta : \Omega_{\beta, \alpha} \text{ is a SFT} \}, \\
\mathcal{F}(\beta) := \Delta(\beta) \cap \mathcal{F},\n\end{cases}
$$

- Theorem (Parry, 1960) The set of β such that Ω_{β} is a SFT is dense in $(1, +\infty)$.
- Question 1:

Can we extend Parry's classic result to $\Omega_{\beta,\alpha}$?

- Theorem (Li, Sahlsten, Samuel & Steiner, 2019) F is dense in Δ .
- Theorem (Quackenbush, Samuel & West, 2020) When β is a multinacci number, $\mathcal{F}(\beta)$ is dense in $\Delta(\beta)$.
- Question 2: What about general Pisot numbers?

2. Main results

4 日下

4 何 ▶ - 4 国 米

$$
\begin{cases}\n\Delta(k_+) := \{(\beta,\alpha) \in \Delta : k_+ \text{ is periodic and } \tau_{\beta,\alpha}(\frac{1-\alpha}{\beta}+) = k_+\}, \\
\Delta(k_-) := \{(\beta,\alpha) \in \Delta : k_- \text{ is periodic and } \tau_{\beta,\alpha}(\frac{1-\alpha}{\beta}-) = k_-\}, \\
\mathcal{F}(k_\pm) := \Delta(k_\pm) \cap \mathcal{F}.\n\end{cases}
$$

Self-admissible: k_+ and k_- satisfy that, $\sigma(k_+) \preceq \sigma^{\bar n}(k_+)$ and $\sigma(k_{-})\succeq\sigma^{n}(k_{-})$ for all $n\geq 0$.

Theorem 1 (S.-Li-Ding, Nonlinearity, 2023)

Let k_+ and k_- be self-admissible. Then $\mathcal{F}(k_+)$ is dense in the fiber $\Delta(k_+)$ and $\mathcal{F}(k_{-})$ is dense in the fiber $\Delta(k_{-})$.

∢ ⊡

• $T_{\beta,\alpha}$ or (β,α) has matching if there exists a finite integer *n* such that $T_{\beta,\alpha}^n(0+) = T_{\beta,\alpha}^n(1-)$, i.e., $T_{\beta,\alpha}^{n+1}(c+) = T_{\beta,\alpha}^{n+1}(c-)$. $\int \mathcal{M} := \{(\beta, \alpha) \in \Delta : T_{\beta, \alpha} \text{ has matching}\},\$ $\mathcal{M}(\beta)\mathrel{\mathop:}=\Delta(\beta)\cap\mathcal{M}.$

Theorem 2 (S.-Li-Ding, Nonlinearity, 2023)

 $\mathcal{F} \subseteq \mathcal{M}$, and $\overline{\mathcal{F}(\beta)} = \overline{\mathcal{M}(\beta)}$.

 Ω

⊀ 御 ⊁ .⊀ 君 ⊁ .⊀ 君 ⊁

Notations:

$$
\begin{cases}\nI(\beta,\alpha) := \{(\beta,\alpha') \in \Delta(\beta) : T_{\beta,\alpha'} \text{ has same matching as } T_{\beta,\alpha}\}, \\
\mathcal{F}(\beta,\alpha) := I(\beta,\alpha) \cap \mathcal{F}.\n\end{cases}
$$

Theorem 3 (S.-Li-Ding, Nonlinearity, 2023)

Let $(\beta, \alpha) \in \mathcal{M}$. Then

 \bigcirc I(β, α) is a subinterval of $\Delta(\beta)$ and can be fully characterized. $\overline{\mathcal{F}(\beta,\alpha)} = \overline{I(\beta,\alpha)}.$

Corollary (S.-Li-Ding, Nonlinearity, 2023)

Let $\alpha \in (0, 2 - \beta)$. $I(\beta, \alpha) = \Delta(\beta)$ if and only if β is a multinacci number.

 QQQ