Fiber denseness of intermediate β -shifts of finite type

Yun Sun (joint work with Bing Li & Yiming Ding)

South China University of Technology

Numeration 2024 Utrecht, Netherland 04 June

• Backgrounds

• Main resluts

Yun Sun (SCUT)

э

1. Backgrounds

< 🗇 🕨 < 🖃 🕨

Let $T_{\beta,\alpha}(x) = \beta x + \alpha \pmod{1}$ for $x \in [0,1]$. Then $T_{\beta,\alpha}$ has one discontinuity if

 $(\beta, \alpha) \in \Delta := \{ (\beta, \alpha) \in \mathbb{R}^2 : \beta \in (1, 2) \text{ and } 0 < \alpha < 2 - \beta \}$

Moreover, denote the critical point $c = (1-\alpha)/\beta$.

Kneading sequence of a point x, $\tau_{\beta,\alpha}(x)$, is defined to be $(\epsilon_1 \epsilon_2 \cdots)$, where

$$\epsilon_i = 0 \qquad ext{if} \quad T^{i-1}_{eta,lpha}(x) < m{c}, \quad ext{ and } \quad \epsilon_i = 1 \qquad ext{if} \quad T^{i-1}_{eta,lpha}(x) > m{c}.$$

When x is a preimage of c, x has two sequences

$$au_{eta,lpha}(x+) = \lim_{y \downarrow x} au_{eta, lpha}(y), \qquad au_{eta, lpha}(x-) = \lim_{y \uparrow x} au_{eta, lpha}(y),$$

where the y's run through points of [0,1] which are not preimages of c.

• Kneading invariants of $\Omega_{\beta,\alpha}$ is defined to be the pair of sequences $(k_+, k_-) = (\tau_{\beta,\alpha}(c+), \tau_{\beta,\alpha}(c-)).$

• Theorem (Hubbard & Sparrow, 1990)

$$\Omega_{\beta,\alpha} = \left\{ \omega \in \{0,1\}^{\mathbb{N}} \colon \sigma(k_{+}) \preceq \sigma^{n}(\omega) \preceq \sigma(k_{-}) \text{ for all } n \in \mathbb{N}_{0} \right\}$$

- SFT: A subshift Ω is said to be of finite type if it can be defined by a finite set of forbidden blocks.
- Theorem (Parry, 1960) Let β ∈ (1, 2).
 The greedy β-shift (α = 0) is a SFT if and only if k₋ is periodic;
 The lazy β-shift (α = 2 − β) is a SFT if and only if k₊ is periodic.
 Theorem (Li, Sahlsten & Samuel, 2016) Let β ∈ (1, 2) and α ∈ (0, 2 − β), the intermediate β-shift Ω_{β,α} is a SFT if and only if both k₊ and k₋ are periodic.

Questions

Notations:

$$\begin{cases} \Delta(\beta) := \{ (\beta, \alpha) \in \mathbb{R}^2 : 0 < \alpha < 2 - \beta \} \text{ where } \beta \in (1, 2) \text{ is fixed}, \\ \mathcal{F} := \{ (\beta, \alpha) \in \Delta : \Omega_{\beta, \alpha} \text{ is a SFT} \}, \\ \mathcal{F}(\beta) := \Delta(\beta) \cap \mathcal{F}, \end{cases}$$

- Theorem (Parry, 1960) The set of β such that Ω_{β} is a SFT is dense in $(1, +\infty)$.
- Question 1:

Can we extend Parry's classic result to $\Omega_{\beta,\alpha}$?

- Theorem (Li, Sahlsten, Samuel & Steiner, 2019)
 F is dense in Δ.
- Theorem (Quackenbush, Samuel & West, 2020)
 When β is a multinacci number, F(β) is dense in Δ(β).
- Question 2: What about general Pisot numbers?

2. Main results

Image: A match a ma

$$\begin{cases} \Delta(k_{+}) := \{(\beta, \alpha) \in \Delta : k_{+} \text{ is periodic and } \tau_{\beta, \alpha}(\frac{1-\alpha}{\beta}+) = k_{+}\}, \\ \Delta(k_{-}) := \{(\beta, \alpha) \in \Delta : k_{-} \text{ is periodic and } \tau_{\beta, \alpha}(\frac{1-\alpha}{\beta}-) = k_{-}\}, \\ \mathcal{F}(k_{\pm}) := \Delta(k_{\pm}) \cap \mathcal{F}. \end{cases}$$

Self-admissible: k_+ and k_- satisfy that, $\sigma(k_+) \preceq \sigma^n(k_+)$ and $\sigma(k_-) \succeq \sigma^n(k_-)$ for all $n \ge 0$.

Theorem 1 (S.-Li-Ding, Nonlinearity, 2023)

Let k_+ and k_- be self-admissible. Then $\mathcal{F}(k_+)$ is dense in the fiber $\Delta(k_+)$ and $\mathcal{F}(k_-)$ is dense in the fiber $\Delta(k_-)$.

• $T_{\beta,\alpha}$ or (β, α) has matching if there exists a finite integer n such that $T_{\beta,\alpha}^{n}(0+) = T_{\beta,\alpha}^{n}(1-)$, i.e., $T_{\beta,\alpha}^{n+1}(c+) = T_{\beta,\alpha}^{n+1}(c-)$. $\begin{cases}
\mathcal{M} := \{(\beta, \alpha) \in \Delta : T_{\beta,\alpha} \text{ has matching}\}, \\
\mathcal{M}(\beta) := \Delta(\beta) \cap \mathcal{M}.
\end{cases}$

Theorem 2 (S.-Li-Ding, Nonlinearity, 2023)

 $\mathcal{F} \subsetneq \mathcal{M}$, and $\overline{\mathcal{F}(\beta)} = \overline{\mathcal{M}(\beta)}$.

Notations:

$$\begin{cases} I(\beta, \alpha) := \{ (\beta, \alpha') \in \Delta(\beta) : T_{\beta, \alpha'} \text{ has same matching as } T_{\beta, \alpha} \}, \\ \mathcal{F}(\beta, \alpha) := I(\beta, \alpha) \cap \mathcal{F}. \end{cases}$$

Theorem 3 (S.-Li-Ding, Nonlinearity, 2023)

Let $(\beta, \alpha) \in \mathcal{M}$. Then

• $I(\beta, \alpha)$ is a subinterval of $\Delta(\beta)$ and can be fully characterized.

Corollary (S.-Li-Ding, Nonlinearity, 2023)

Let $\alpha \in (0, 2 - \beta)$. $I(\beta, \alpha) = \Delta(\beta)$ if and only if β is a multinacci number.