Aperiodic sequences: Complexity and Rauzy fractals

Tony Samuel

University of Birmingham and University of Exeter

June 05, 2024

- Gohlke, Mitchell, Rust and Samuel. Rauzy fractals of random substitutions arxiv.org/abs/2401.06732 (2024)
- Gohlke, Mitchell, Rust and Samuel. Measure theoretic entropy of random substitution subshifts Ann. Henri Poincaré 24 277-323 (2023)
- Gröger, Kesseböhmer, Mosbach, Samuel and Steffens. A classification of aperiodic order via spectral metrics and Jarnik sets Ergod. Dyn. Sys. 39, 3031-3065 (2019)

Let $\theta \in (0, 1) \setminus \mathbb{Q}$. For $n \in \mathbb{N}_0$ set $s_n = \lfloor n\theta \rfloor - \lfloor (n-1)\theta \rfloor$. The infinite word $s_\theta = (s_0, s_1, ...)$ is the Sturmian word of slope θ .

Dynamical properties of Sturmians [Hedlund and Morse, Amer. J. Math. 61 (1940)]

The orbit closure X_{θ} of s_{θ} under the left-shift is minimal and aperiodic with zero topological entropy.

Example

$$\begin{split} \theta &= (-1 + \sqrt{5})/2 \\ &= [0; \overline{1}] = [0; 1, 1, 1, \ldots] \\ s_{\theta} &= (1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1$$

 $s_\eta = (1,0,1,0,1,1,0,1,0,1,1,0,\dots)$

Question What are measures of complexity beyond topological entropy?

Return times: The distance between occurrences of a given string (subword) of length *n* in s_{θ} .

Theorem [Duran. Ergodic Theory Dynam. Systems 20 (2000)] The following are equivalent.

- The return time of occurrences of a given string of length *n* in s_θ is O(n).
- ► There exists $K \in \mathbb{N}$ with $a_n \leq K$ for all $n \in \mathbb{N}$. Namely, θ is badly approximable.

Question What if we are not badly approximable?

Let $\theta \in (0, 1) \setminus \mathbb{Q}$. For $n \in \mathbb{N}_0$ set $s_n = \lfloor n\theta \rfloor - \lfloor (n-1)\theta \rfloor$. The infinite word $s_{\theta} = (s_0, s_1, ...)$ is the Sturmian word of slope θ .

Dynamical properties of Sturmians [Hedlund and Morse, *Amer. J. Math.* **61** (1940)] The orbit closure X_{θ} of s_{θ} under the left-shift is minimal and aperiodic with zero topological entropy.

Example

Notation

$$s_{\eta} = (1,0,1,0,1,1,0,1,0,1,1,0,\dots)$$

Theorem [Gröger, Kesseböhmer, Mosbach, S. and Steffens. Ergodic Theory Dynam. Systems (2019)]

We have control over the return times, if and only if, we have control over the growth rate of the continued fraction entries.

Let $\theta = [0; a_1, a_2 \dots] \in (0, 1) \setminus \mathbb{Q}$ and let $\alpha \ge 1$.

The following are equivalent.

The return time between occurrences of strings of length *n* in s_θ is O(n^α).

►
$$0 < \limsup_{n \to \infty} a_n q_{n-1}^{1-\alpha} < \infty$$

Question How large is the set of such θ ?

$$p_n/q_n = [0; a_1, ..., a_n]$$
 with $gcd(p_n, q_n) = 1$

$$[0; a_1, a_2, a_3 \dots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$

Let $\theta \in (0, 1) \setminus \mathbb{Q}$. For $n \in \mathbb{N}_0$ set $s_n = \lfloor n\theta \rfloor - \lfloor (n-1)\theta \rfloor$. The infinite word $s_{\theta} = (s_0, s_1, ...)$ is the Sturmian word of slope θ .

Dynamical properties of Sturmians [Hedlund and Morse, *Amer. J. Math.* **61** (1940)] The orbit closure X_{θ} of s_{θ} under the left-shift is minimal and aperiodic with zero topological entropy.

Example

$$\theta = (-1 + \sqrt{5})/2$$

= [0; $\overline{1}$] = [0; 1, 1, 1, ...]
 $s_{\theta} = (1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0$

$$\eta = \begin{bmatrix} 0; 1, 1, 1, 1, 2, 3, 6, 16, \\ 67, 547, 4062, \dots \end{bmatrix}$$

 $s_{\eta} = (1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, \dots)$

Theorem [Gröger, Kesseböhmer, Mosbach, S. and Steffens. *Ergodic Theory Dynam. Systems* (2019)]

We have control over the return times, if and only if, we have control over the growth rate of the continued fraction entries.

Let $\theta = [0; a_1, a_2 \dots] \in (0, 1) \setminus \mathbb{Q}$ and let $\alpha \ge 1$.

The following are equivalent.

The return time between occurrences of strings of length *n* in s_θ is O(n^α).

►
$$0 < \limsup_{n \to \infty} a_n q_{n-1}^{1-\alpha} < \infty$$

Question How large is the set of such θ ?

Theorem [Gröger, Kesseböhmer, Mosbach, S. and Steffens. Ergodic Theory Dynam. Systems (2019)]

For $\alpha > 1$, letting Θ_{α} denote the set of such θ , we have that dim_{\mathcal{H}} (Θ_{α}) = 2/(α + 1).

Let $\theta \in (0, 1) \setminus \mathbb{Q}$. For $n \in \mathbb{N}_0$ set $s_n = \lfloor n\theta \rfloor - \lfloor (n-1)\theta \rfloor$. The infinite word $s_\theta = (s_0, s_1, ...)$ is the Sturmian word of slope θ .

Example

- $\begin{aligned} \theta &= (-1 + \sqrt{5})/2 \\ &= [0;\overline{1}] = [0;1,1,1,\dots] \end{aligned}$
- Sturmian words are 1-balanced. For any two subwords $(\omega_0, \dots, \omega_{n-1})$ and $(\nu_0, \dots, \nu_{n-1})$ of the same length, $|\#\{i : \omega_i = 1\} - \#\{i : \nu_i = 1\}| \le 1$.
- The Rauzy fractal of a Sturmian word is an interval.

Notation $[0; a_1, a_2, a_3 \dots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$

Geometric representations of Sturmians

This geometric interpretation of s_{θ} is often called the staircase of s_{θ} .

Question What if we increase the number of letters?

- A second prototypical model for a quasicrystal is a word generated by a substitution.
- Every Sturmian of slope θ, with θ a quadratic irrational, can be generated by a substitution.

Question What happens if we increase the number of letters? The tribonacci substitution $-\varphi_{trib}$: $\{0, 1, 2\} \rightarrow \{0, 1, 2\}^*$ $\varphi_{trib}(0) = (0, 1) \quad \varphi_{trib}(1) = (0, 2) \quad \varphi_{trib}(2) = (0)$ $(0) \mapsto (0, 1) \mapsto (0, 1, 0, 2) \mapsto (0, 1, 0, 2, 0, 1, 0)$ $\mapsto (0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1)$ $\mapsto \dots$

The twisted tribonacci substitution $-\varphi_{twtr}: \{0, 1, 2\} \rightarrow \{0, 1, 2\}^*$

 $\varphi_{twtr}(0) = (1,0) \quad \varphi_{twtr}(1) = (0,2) \quad \varphi_{twtr}(2) = (0)$ (0) $\mapsto (1,0) \mapsto (0,2,1,0) \mapsto (1,0,0,0,2,1,0)$ $\mapsto (0,2,1,0,1,0,1,0,0,0,2,1,0)$ $\mapsto \dots$

Properties of φ_{trib} and φ_{twtr} Let φ be either φ_{trib} or φ_{twtr} (Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Springer (2002))

- $\triangleright \varphi$ has a power which admits a a substitution-fixed point.
- The orbit closure of each substitution-fixed point of φ is the same, and is minimal and aperiodic. The shift-space X_φ has zero topological entropy and is uniquely ergodic.
- The return times of occurrences of stings of length *n* in a substitution-fixed point of φ is O(n).
- There exists a straight line *l* in the direction of **R**, such that the staircase of a substitution-fixed point of *φ* remains within a bounded distance from *l*.
- The Rauzy fractal of two different substitution-fixed points of φ are translates of each other. Moreover, the Rauzy fractal of a substitution-fixed point of φ is the closure of its interior.

Question What happens if one stochastically mixes two substitutions? Namely, what happens if we fix $p \in [0, 1]$ and let $\varphi_p : \{0, 1, 2\} \rightarrow \{0, 1, 2\}^*$ be defined by

 $\varphi_{\rho}(0) = \begin{cases} (0,1) & \text{with probability } \rho \\ (1,0) & \text{with probability } 1-\rho \end{cases} \qquad \varphi_{\rho}(1) = (0,2) \qquad \varphi_{\rho}(2) = (0)$

The random tribonacci substitution shift-space

- A word u ∈ {0, 1, 2}* is called legal if it appears as a subword of a realisation of φⁿ_p(a) for some a ∈ {0, 1, 2} and n ∈ N₀. We let L_{r-trib} denote the set of legal words.
- ▶ The random tribonacci substitution shift-space X_{r-trib} is $\{\omega \in \{0, 1, 2\}^{\mathbb{N}_0} : \mathcal{L}(\omega) \subseteq \mathcal{L}_{r-trib}\}$.
- ► The substitution matrix of φ_p is $M_{\varphi_p} = (\mathbb{E}(\varphi_p(b)|_a))_{a,b\in[0,1,2]}$, namely

$$M_{\varphi_{p}} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \begin{array}{l} \lambda = 1.83929 \dots & \lambda^{3} - \lambda^{2} - \lambda = 1 \\ \mathbf{R} = (\lambda^{2} + \lambda + 1)^{-1} (\lambda^{2}, \lambda, 1)^{\top} \end{array}$$

Properties of the random tribonacci substitution shift-space $X_{\varphi_{o}}$

[Rust and Spindeler. Indag. Math. 29 (2018)] and [Golhke. Monatsh. Math. 192 (2020)]

- The shift-space X_{r-trib} has no periodic points, and has positive topological entropy.
- ► The shift-space X_{r-trib} supports uncountably many ergodic measures. Namely, for $p \in [0, 1]$ the frequency measure μ_p is ergodic, where for a fixed $a \in \{0, 1, 2\}$ and every $u \in \mathcal{L}_{r-trib}$ we set

$$\mu_{p}([u]) = \lim_{m \to \infty} \frac{\mathbb{E}(\varphi_{p}^{m}(a)|_{u})}{\mathbb{E}(|\varphi_{p}^{m}(a)|)}.$$

Theorem [Gohlke, Mitchell, Rust and S. Ann. Henri Poincaré 24 (2023)]

We obtain explicit upper and lower bounds, which converge exponential, for $h(\mu_p)$.

Question What happens if one stochastically mixes two substitutions? Namely, what happens if we fix $p \in [0, 1]$ and let $\varphi_p : \{0, 1, 2\} \rightarrow \{0, 1, 2\}^*$ be defined by

 $\varphi_{\rho}(0) = \begin{cases} (0,1) & \text{with probability } \rho \\ (1,0) & \text{with probability } 1-\rho \end{cases} \qquad \varphi_{\rho}(1) = (0,2) \qquad \varphi_{\rho}(2) = (0)$

A construction for a canonical Rauzy fractal for the random tribonacci substitution [Gohlke, Mitchell, Rust and S. arxiv.org/abs/2401.06732 (2024)]

The following set is compact and contains a dense left-shift-orbit:

$$X^{\infty}_{\text{r-trib}} = \bigcap_{m \in \mathbb{N}_0} \{ \nu \in \{0, 1, 2\}^{\mathbb{N}_0} : \nu \text{ is a realisation of } \varphi^m_{\rho}(\omega) \text{ for some } \omega \in X_{\text{r-trib}} \}$$

- ▶ We let \mathbb{H} denote the hyperplane spanned by the non-dominant right eigenvectors of M_{φ_p} .
- ▶ We let π be the natural projection from \mathbb{R}^3 to \mathbb{H} and for $u \in \mathcal{L}_{r-trib}$, set $\phi(u) = (u|_a)_{a \in [0,1,2]}$.
- ► The Rauzy fractal of the random tribonacci substitution corresponding to ω is defined to be $\mathcal{R}(\omega) = \pi(\{\phi(\omega_0, \omega_1 \dots \omega_{n-1}) : n \in \mathbb{N}\}).$

Theorem [Gohlke, Mitchell, Rust and S. arxiv.org/abs/2401.06732 (2024)]

If ω and $\nu \in X_{r-trib}^{\infty}$ have dense-left-shift orbits in X_{r-trib} , then we have the following.

- $\blacktriangleright \ \mathcal{R}(\omega) = \mathcal{R}(\nu)$
- $\mathcal{R}(\omega)$ is the closure of its interior
- > $\mathcal{R}(\omega)$ is the attractor of a graph directed iterated function system

Theorem [Gohlke, Mitchell, Rust and S. arxiv.org/abs/2401.06732 (2024)]

For $\omega = (\omega_0, \omega_1, \dots) \in X_{r-trib}$ and $m \in \mathbb{N}$, we set

$$u_m(\omega) = \sum_{n=0}^m \delta_{\pi \circ \phi(\omega_0,...,\omega_n)}.$$

For μ_p -almost all $\omega \in X_{r-trib}$, the following weak limit exists.

$$v = \lim_{m \to \infty} m^{-1} v_m(\omega)$$

