Expansions of generalized Thue-Morse numbers

Yao-Qiang Li
School of Mathematics and Statistics
Guangdong University of Technology, China
yaoqiang.li@gdut.edu.cn; scutyaoqiangli@qq.com

Background

Expansions in non-integer bases are pioneered by Rényi and Parry in 1957-1960.

Given $m \in \mathbb{N}$, a base $\beta \in (1, m+1]$ and $x \in \mathbb{R}$, a sequence $w = (w_n)_{n \geq 1} \in \{0, 1, \ldots, m\}^\infty$ is called a β-expansion of x if

$$x = \pi_\beta(w) := \sum_{n=1}^{\infty} \frac{w_n}{\beta^n}$$

• x has a β-expansion iff $x \in [0, \frac{1}{\beta-1}]$.
• x may have many β-expansions or have a unique one.

Unique expansions have attracted a lot of attention in the last four decades: Allouche, Baker, Clarke, de Vries, Erdős, Frougny, Glingenstein, Horváth, Joó, Kalle, Komornik, Kong, Li, Loret, Lü, Sidorov, ...

The famous Thue-Morse sequence $(t_n)_{n \geq 0}$ is

$$t_0 = 0, \quad t_1 = 1, \quad t_{n+2} = t_n t_{n+1}.$$

The shifted Thue-Morse sequence $(s_n)_{n \geq 1}$ is

$$s_0 = 1, \quad s_1 = 0, \quad s_{n+2} = s_n s_{n+1}.$$

Main Results

Proposition. Let σ be the shift map. The following are all equivalent.

1. For all $0 < n < q - 1$ we have $\theta_1 \cdots \theta_{q-n} \neq 0$.
2. For all $n \geq 1$ we have $\sigma^n \theta < \theta$.
3. For all $n > 1$ we have $\sigma^n \theta < \theta$.
4. For all $n \geq 1$ we have $\sigma^n \theta > \theta$.
5. Whenever $\sigma^n \theta < \theta$.
6. Whenever $\sigma^n \theta > \theta$.

Theorem. (1) For all $\beta \in (1, m+1]$, if θ is the greedy, lazy, quasi-greedy, quasi-lazy or unique β-expansion of $\pi_\beta(\theta)$, then $\beta \geq \beta_0$.

(2) The following are all equivalent.
1. For all $0 < n < q - 1$ we have $\theta_1 \cdots \theta_{q-n} < \theta_1 \cdots \theta_q$.
2. θ is the unique β_0-expansion of 1.
3. θ is the greedy β_0-expansion of 1.
4. θ is the lazy β_0-expansion of 1.
5. θ is the quasi-greedy β_0-expansion of 1.
6. θ is the quasi-lazy β_0-expansion of 1.

Corollary. Let $\beta \in (1, 2]$ and consider the alphabet $\{0, 1\}$. The following are all equivalent.

1. $(t_n)_{n \geq 0}$ is the unique β-expansion of $\pi_\beta((t_n)_{n \geq 0})$.
2. $(t_n)_{n \geq 0}$ is the greedy β-expansion of $\pi_\beta((t_n)_{n \geq 0})$.
3. $(t_n)_{n \geq 0}$ is the lazy β-expansion of $\pi_\beta((t_n)_{n \geq 0})$.
4. $(t_n)_{n \geq 0}$ is the quasi-greedy β-expansion of $\pi_\beta((t_n)_{n \geq 0})$.
5. $(t_n)_{n \geq 0}$ is the quasi-lazy β-expansion of $\pi_\beta((t_n)_{n \geq 0})$.
6. $\beta \geq \beta_0$, the classical Komornik-Loreti constant.

Questions

When will θ be the unique β-expansion of $\pi_\beta(\theta)$?

- **greedy** (maximal among all the β-expansions of x)
- **lazy** (minimal among all the β-expansions of x)
- **quasi-greedy** (maximal among all the β-expansions of x not ending with 0^∞)
- **quasi-lazy** (minimal among all the β-expansions of x not ending with m^∞)

In 2015, Kong and Li [1, Theorem 4.4] showed that:

θ is the unique β_0-expansion of 1^∞ if for all $1 \leq n \leq q$ we have

$$\theta_1 \cdots \theta_q \leq \theta_q \cdots \theta_1$$

References: