Expansions of generalized Thue-Morse numbers

Yao-Qiang Li

School of Mathematics and Statistics
Guangdong University of Technology, China
yaoqiang.li@gdut.edu.cn; scutyaoqiangli@qq.com

Background

Expansions in non-integer bases are pioneered by Rényi and Parry in 1957-1960.

Given $m \in \mathbb{N}$, a base $\beta \in (1, m+1]$ and $x \in \mathbb{R}$, a sequence $w = (w_n)_{n \geq 1} \in \{0, 1, \cdots, m\}^{\mathbb{N}}$ is called a β -expansion of x if $x = \pi_{\beta}(w) := \sum_{n=1}^{\infty} \frac{w_n}{\beta^n}$.

- x has a β -expansion iff $x \in [0, \frac{m}{\beta-1}]$.
- x may have many β -expansions or have a unique one.

Unique expansions have attracted a lot of attention in the last four decades: Allouche, Baker, Clarke, de Vries, Erdös, Frougny, Glendinning, Horváth, Joó, Kalle, Komornik, Kong, Li, Loreti, Lü, Sidorov, ...

The famous Thue-Morse sequence $(t_n)_{n\geqslant 0}$ is

The shifted Thue-Morse sequence $(t_n)_{n\geq 1}$ is

1101 0011 0010 1101 0010 1100 1101 0011

 $0110\ 1001\ 1001\ 0110\ 1001\ 0110\ 0110\ 1001\ \cdots$

Let $\overline{0} := 1$ and $\overline{1} := 0$. Then $(t_n)_{n \ge 1}$ can be defined by

$$t_1 := 1, \ t_1t_2 := t_1\overline{t_1}^+ = 11, \ t_1t_2t_3t_4 := t_1t_2\overline{t_1t_2}^+ = 1101, \ \cdots$$

The classical Komornik-Loreti constant is the unique $\mathfrak{q} \in (1,2)$ s.t. $\Sigma_{n=1}^{\infty} \frac{t_n}{\mathfrak{q}^n} = 1$.

Generalization: For $k \in \{0, \dots, m\}$ denote $\overline{k} := m - k$. For $m, q \in \mathbb{N}$ and $\theta_1, \dots, \theta_q \in \{0, \dots, m\}$ with $\theta_q \neq 0$, define the $(m; \theta_1, \dots, \theta_q)$ -Thue-Morse sequence $\theta = (\theta_n)_{n \geqslant 1}$ by

$$\theta_1 \cdots \theta_{2q} := \theta_1 \cdots \theta_q \overline{\theta_1 \cdots \theta_q}^+,$$
 $\theta_1 \cdots \theta_{4q} := \theta_1 \cdots \theta_{2q} \overline{\theta_1 \cdots \theta_{2q}}^+,$

These sequences were previously studied by Allouche, de Vries, Komornik, Kong, Li, · · · in different terms.

The $(m; \theta_1, \cdots, \theta_q)$ -Komornik-Loreti constant is the unique $\beta_\theta \in (1, m+1)$ s.t.

$$\sum_{n=1}^{\infty} \frac{\theta_n}{\beta_{\theta}^n} = 1.$$

For any $(m; \theta_1, \cdots, \theta_q)$ -Thue-Morse sequence $\theta = (\theta_i)_{i \geqslant 1}$ and $\beta \in (1, m+1]$, we call

$$\pi_{\beta}(\theta) = \sum_{n=1}^{\infty} \frac{\theta_n}{\beta^n}$$

the β - $(m; \theta_1, \cdots, \theta_q)$ -Thue-Morse number.

Questions

When will θ be the unique β -expansion of $\pi_{\beta}(\theta)$?

greedy (maximal among all the β -expansions of x)

lazy (minimal among all the β -expansions of x)

quasi-greedy (maximal among all the β -expansions of x not end with 0^{∞}) quasi-lazy (minimal among all the β -expansions of x not end with m^{∞})

• In 2015, Kong and Li [1, Theorem 4.4] showed that:

 θ is the unique β_{θ} -expansion of 1 iff for all $1 \le n \le q$ we have

$$\overline{\theta_1 \cdots \theta_q^-} \leqslant \theta_n \cdots \theta_q^- \theta_1 \cdots \theta_{n-1}$$
 and $\theta_n \cdots \theta_q \overline{\theta_1 \cdots \theta_{n-1}} \leqslant \theta_1 \cdots \theta_q$.

Main Results

Proposition. Let σ be the shift map. The following are all equivalent.

- (1) For all $0 \le n \le q-1$ we have $\overline{\theta_1 \cdots \theta_{q-n}} < \theta_{n+1} \cdots \theta_q \le \theta_1 \cdots \theta_{q-n}$.
- (2) For all $n \ge 1$ we have $\overline{\theta} < \sigma^n \theta < \theta$.
- (3) For all $n \ge 1$ we have $\sigma^n \theta < \theta$.
- (4) For all $n \ge 1$ we have $\sigma^n \theta > \overline{\theta}$.
- (5) Whenever $\theta_n < m$ we have $\sigma^n \theta < \theta$.
- (6) Whenever $\theta_n > 0$ we have $\sigma^n \theta > \overline{\theta}$.

Theorem. (1) For all $\beta \in (1, m+1]$, if θ is the greedy, lazy, quasi-greedy, quasi-lazy or unique β -expansion of $\pi_{\beta}(\theta)$, then $\beta \geqslant \beta_{\theta}$.

- (2) The following are all equivalent.
- ① For all $0 \le n \le q-1$ we have $\overline{\theta_1 \cdots \theta_{q-n}} < \theta_{n+1} \cdots \theta_q \le \theta_1 \cdots \theta_{q-n}$.
- ② θ is the unique β_{θ} -expansion of 1.
- ③ θ is the greedy β_{θ} -expansion of 1.
- θ is the lazy β_{θ} -expansion of 1.
- ⑥ θ is the quasi-lazy β_{θ} -expansion of 1.
- (7) $\{\beta \in (1, m+1] : \theta \text{ is the unique } \beta\text{-expansion of } \pi_{\beta}(\theta)\} = [\beta_{\theta}, m+1].$
- ® $\{\beta \in (1, m+1] : \theta \text{ is the greedy } \beta\text{-expansion of } \pi_{\beta}(\theta)\} = [\beta_{\theta}, m+1].$
- (9) $\{\beta \in (1, m+1] : \theta \text{ is the lazy } \beta\text{-expansion of } \pi_{\beta}(\theta)\} = [\beta_{\theta}, m+1].$
- ① $\{\beta \in (1, m+1] : \theta \text{ is the quasi-greedy } \beta\text{-expansion of } \pi_{\beta}(\theta)\}=[\beta_{\theta}, m+1].$
- ① $\{\beta \in (1, m+1] : \theta \text{ is the quasi-lazy } \beta\text{-expansion of } \pi_{\beta}(\theta)\} = [\beta_{\theta}, m+1].$

Corollary. Let $\beta \in (1,2]$ and consider the alphabet $\{0,1\}$.

The following are all equivalent.

- (1) $(t_n)_{n\geqslant 1}$ is the unique β -expansion of $\pi_{\beta}((t_n)_{n\geqslant 1})$.
- (2) $(t_n)_{n \ge 1}$ is the greedy β -expansion of $\pi_{\beta}((t_n)_{n \ge 1})$.
- (3) $(t_n)_{n \ge 1}$ is the lazy β -expansion of $\pi_{\beta}((t_n)_{n \ge 1})$.
- (4) $(t_n)_{n \ge 1}$ is the quasi-greedy β -expansion of $\pi_{\beta}((t_n)_{n \ge 1})$.
- (5) $(t_n)_{n \ge 1}$ is the quasi-lazy β -expansion of $\pi_{\beta}((t_n)_{n \ge 1})$.
- (6) $\beta \ge$ the classical Komornik-Loreti constant.

References: [1] D. Kong, W. Li, Hausdorff dimension of unique beta expansions. Nonlinearity 28 (2015), no. 1, 187-209.

[2] Y.-Q. Li, Expansions of generalized Thue-Morse numbers. Adv. in Appl. Math. 143 (2023), Paper No. 102456.