Expansions of generalized Thue-Morse numbers

Yao-Qiang Li Guangdong University of Technology, China yaoqiang.li@gdut.edu.cn

> Numeration 2024 Utrecht, Netherlands 04/06/2024

Background

2 Main Results

1. Background

Expansions in non-integer bases are pioneered by Rényi and Parry in 1957-1960.

Given $m \in \mathbb{N}$, a base $\beta \in (1, m+1]$ and $x \in \mathbb{R}$, a sequence $w = (w_n)_{n \geqslant 1} \in \{0, 1, \cdots, m\}^{\mathbb{N}}$ is called a β -expansion of x if

$$x = \pi_{\beta}(w) := \sum_{n=1}^{\infty} \frac{w_n}{\beta^n}.$$

- x has a β -expansion iff $x \in [0, \frac{m}{\beta 1}]$.
- An x may have many β -expansions or have a unique one.

Unique expansions have attracted a lot of attention in the last four decades: Allouche, Baker, Clarke, de Vries, Erdös, Frougny, Glendinning, Horváth, Joó, Kalle, Komornik, Kong, Li, Loreti, Lü, Sidorov, ...

Thue-Morse sequence and Komornik-Loreti constant

The famous Thue-Morse sequence $(t_n)_{n\geqslant 0}$ is 0110 1001 1001 0110 1001 0110 0110 1001 \cdots . The shifted Thue-Morse sequence $(t_n)_{n\geqslant 1}$ is 1101 0011 0010 1101 0010 1100 1101 0011 \cdots . Let $\overline{0}:=1$ and $\overline{1}:=0$. Then $(t_n)_{n\geqslant 1}$ can be defined by $t_1:=1$,

$$t_1 \cdot t_2 := t_1 \overline{t_1}^+ = 11,$$
 $t_1 t_2 := t_1 \overline{t_1}^+ = 11,$
 $t_1 t_2 t_3 t_4 := t_1 t_2 \overline{t_1 t_2}^+ = 1101,$
 $t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 := t_1 t_2 t_3 t_4 \overline{t_1 t_2 t_3 t_4}^+ = 11010011,$
 $\dots,$

The classical Komornik-Loreti constant is the unique $q \in (1,2)$ s.t.

$$\sum_{n=1}^{\infty} \frac{t_n}{\mathfrak{q}^n} = 1.$$

Generalization: For $k \in \{0, \cdots, m\}$ denote $\overline{k} := m - k$. For $m, q \in \mathbb{N}$ and $\theta_1, \cdots, \theta_q \in \{0, \cdots, m\}$ with $\theta_q \neq 0$, define the $(m; \theta_1, \cdots, \theta_q)$ -Thue-Morse sequence $\theta = (\theta_n)_{n \geqslant 1}$ by

$$\theta_{1} \cdots \theta_{2q} := \theta_{1} \cdots \theta_{q} \overline{\theta_{1} \cdots \theta_{q}}^{+},
\theta_{1} \cdots \theta_{4q} := \theta_{1} \cdots \theta_{2q} \overline{\theta_{1} \cdots \theta_{2q}}^{+},
\theta_{1} \cdots \theta_{8q} := \theta_{1} \cdots \theta_{4q} \overline{\theta_{1} \cdots \theta_{4q}}^{+},
\vdots$$

These sequences were previously studied by Allouche, de Vries, Komornik, Kong, Li, · · · in different terms.

The $(m; \theta_1, \dots, \theta_q)$ -Komornik-Loreti constant is the unique $\beta_{\theta} \in (1, m+1)$ s.t.

$$\sum_{n=1}^{\infty} \frac{\theta_n}{\beta_{\theta}^n} = 1.$$

For any $(m; \theta_1, \dots, \theta_q)$ -Thue-Morse sequence $\theta = (\theta_i)_{i\geqslant 1}$ and $\beta \in (1, m+1]$, we call

$$\pi_{\beta}(\theta) = \sum_{n=1}^{\infty} \frac{\theta_n}{\beta^n}$$

the β -(m; $\theta_1, \dots, \theta_q$)-Thue-Morse number.

Question: When will this expansion be unique?

greedy (maximal among all the β -expansions of x)

lazy (minimal among all the β -expansions of x)

quasi-greedy (maximal among all the β -expansions of x not end with 0^{∞})

quasi-lazy (minimal among all the β -expansions of x not end with m^{∞})

D. Kong and W. Li (2015):

 θ is the unique β_{θ} -expansion of 1

iff

$$\overline{\theta_1\cdots\theta_q^-}\leqslant\theta_n\cdots\theta_q^-\theta_1\cdots\theta_{n-1}\quad\text{and}\quad\theta_n\cdots\theta_q\overline{\theta_1\cdots\theta_{n-1}}\leqslant\theta_1\cdots\theta_q$$

for all $1 \leqslant n \leqslant q$.

2. Main Results

Let $m, q \in \mathbb{N}$, $\theta_1, \dots, \theta_q \in \{0, \dots, m\}$ with $\theta_q \neq 0$ and $\theta = (\theta_n)_{n \geqslant 1}$ be the $(m, \theta_1, \dots, \theta_q)$ -Thue-Morse sequence. Use σ to denote the shift map.

Proposition (L., Adv. in Appl. Math., 2023)

The following are all equivalent.

- (1) For all $0 \leqslant n \leqslant q-1$ we have $\overline{\theta_1 \cdots \theta_{q-n}} < \theta_{n+1} \cdots \theta_q \leqslant \theta_1 \cdots \theta_{q-n}$.
- (2) For all $n \geqslant 1$ we have $\overline{\theta} < \sigma^n \theta < \theta$.
- (3) For all $n \ge 1$ we have $\sigma^n \theta < \theta$.
- (4) For all $n \ge 1$ we have $\sigma^n \theta > \overline{\theta}$.
- (5) Whenever $\theta_n < m$ we have $\sigma^n \theta < \theta$.
- (6) Whenever $\theta_n > 0$ we have $\sigma^n \theta > \overline{\theta}$.

Recall the $(m; \theta_1, \dots, \theta_q)$ -Komornik-Loreti constant β_{θ} .

Theorem (L., Adv. in Appl. Math., 2023)

- (1) For all $\beta \in (1, m+1]$, if θ is the greedy, lazy, quasi-greedy, quasi-lazy or unique β -expansion of $\pi_{\beta}(\theta)$, then $\beta \geqslant \beta_{\theta}$.
- (2) The following are all equivalent.
 - ① For all $0 \leqslant n \leqslant q-1$ we have $\overline{\theta_1 \cdots \theta_{q-n}} < \theta_{n+1} \cdots \theta_q \leqslant \theta_1 \cdots \theta_{q-n}$.
 - ② θ is the unique β_{θ} -expansion of 1.
 - ③ θ is the greedy β_{θ} -expansion of 1.
 - 4 θ is the lazy β_{θ} -expansion of 1.
 - θ is the quasi-greedy θ -expansion of 1.
 - 6 *θ* is the quasi-lazy $β_\theta$ -expansion of 1.
 - 7 $\{\beta \in (1, m+1] : \theta \text{ is the unique } \beta\text{-expansion of } \pi_{\beta}(\theta)\} = [\beta_{\theta}, m+1].$
 - $\{\beta \in (1, m+1] : \theta \text{ is the greedy } \beta\text{-expansion of } \pi_{\beta}(\theta)\}$ =[β_θ, m+1].
 - ⑨ $\{\beta \in (1, m+1] : \theta \text{ is the lazy } \beta\text{-expansion of } \pi_{\beta}(\theta)\} = [\beta_{\theta}, m+1].$
 - ① $\{\beta \in (1, m+1] : \theta \text{ is the quasi-greedy } \beta\text{-expansion of } \pi_{\beta}(\theta)\} = [\beta_{\theta}, m+1].$
 - ① $\{\beta \in (1, m+1] : \theta \text{ is the quasi-lazy } \beta\text{-expansion of } \pi_{\beta}(\theta)\} = [\beta_{\theta}, m+1].$

Recall the classical Thue-Morse sequence $(t_n)_{n\geqslant 0}$.

Corollary (L., Adv. in Appl. Math., 2023)

Let $\beta \in (1,2]$ and consider the alphabet $\{0,1\}$. The following are all equivalent.

- (1) $(t_n)_{n\geqslant 1}$ is the unique β -expansion of $\pi_{\beta}((t_n)_{n\geqslant 1})$.
- (2) $(t_n)_{n\geqslant 1}$ is the greedy β -expansion of $\pi_{\beta}((t_n)_{n\geqslant 1})$.
- (3) $(t_n)_{n\geqslant 1}$ is the lazy β -expansion of $\pi_{\beta}((t_n)_{n\geqslant 1})$.
- (4) $(t_n)_{n\geqslant 1}$ is the quasi-greedy β -expansion of $\pi_{\beta}((t_n)_{n\geqslant 1})$.
- (5) $(t_n)_{n\geqslant 1}$ is the quasi-lazy β -expansion of $\pi_{\beta}((t_n)_{n\geqslant 1})$.
- (6) $\beta \geqslant$ the classical Komornik-Loreti constant.

Thank you!