Quadratic irrationals and their *N*-continued fraction expansions

Niels Langeveld

Numeration Utrecht

04-06-2024

Quadratic irrationals and their N-continued fr

Quadratic irrationals and their N-continued fr

Regular continued fraction expansions

Let
$$\mathcal{T}:[0,1] o [0,1]$$
 be defined
as $\mathcal{T}(x) = rac{1}{x} - \left\lfloor rac{1}{x}
ight
floor.$

We define $d_1(x) = \lfloor \frac{1}{x} \rfloor$ and $d_n(x) = d_1(T^{n-1}(x))$ for $n \ge 2$.

For $x \in (0, 1)$ we find

Figure: The map T.

04-06-2024

 $x = \frac{1}{d_1(x) + T(x)} = \frac{1}{d_1(x) + \frac{1}{d_2(x) + T^2(x)}} = \frac{1}{d_1(x) + \frac{1}{d_2(x) + \frac{1}{2}}}$

Regular continued fraction expansions

Let
$$T : [0,1] \to [0,1]$$
 be defined
as
 $T(x) = \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor.$
We define $d_1(x) = |\frac{1}{x}|$ and

We define
$$d_1(x) = \lfloor \frac{1}{x} \rfloor$$
 and $d_n(x) = d_1(T^{n-1}(x))$ for $n \ge 2$.

For
$$x \in (0, 1)$$
 we find

Figure: The map T.

$$x = \frac{1}{d_1(x) + T(x)} = \frac{1}{d_1(x) + \frac{1}{d_2(x) + T^2(x)}} = \frac{1}{d_1(x) + \frac{1}{d_2(x) + \cdots}}$$

Quadratic irrationals

Let $x_0 \in [0,1)$ be a quadratic irrational, i.e. an irrational solution to

$$A_0 x_0^2 + B_0 x_0 + C_0 = 0 \tag{1}$$

with $A_0, B_0, C_0 \in \mathbb{Z}$. Then the regular continued fraction expansion of x_0 is periodic. (The reverse statement also holds.)

04-06-2024

Sketch of the proof

The Gauss map, T maps quadratic irrationals to quadratic irrationals.

$$x_1 = T(x_0) = rac{1}{x_0} - d_1(x_0) o x_0 = rac{1}{d_1(x_0) + x_1}$$

We can find A_1, B_1, C_1 such that $A_1x_1^2 + B_1x_1 + C_1 = 0$ by substituting x_0 with $\frac{1}{d_1(x_0)+x_1}$ in $A_0x_0^2 + B_0x_0 + C_0 = 0$:

$$A_0 \left(\frac{1}{x_1 + d_1}\right)^2 + B_0 \left(\frac{1}{x_1 + d_1}\right) + C_0 = 0$$
 (2)

$$C_0 x_1^2 + (B_0 + 2d_1 C_0) x_1 + A_0 + B_0 d_1 + C_0 d_1^2 = 0, \qquad (3)$$

Sketch of the proof continued

Let $x_n = T^n(x)$. The coefficients $A_n, B_n, C_n \in \mathbb{Z}$ such that $A_n x_n^2 + B_n x + C_n = 0$ can be found recursively:

$$A_{n+1} = C_n \tag{4}$$

$$B_{n+1} = B_n + 2d_{n+1}C_n (5)$$

$$C_{n+1} = A_n + B_n d_{n+1} + C_n d_{n+1}^2$$
(6)

For the determinant one can calculate that the following holds:

$$B_n^2 - 4A_nC_n = B_0^2 - 4A_0C_0.$$
⁽⁷⁾

And we can find the bound

$$|A_n| < 2|A_0x| + |A_0| + |B_0|.$$

In particular A_n is unif. bounded. From (4) we find C_n unif. bounded. From (7) we find B_n is unif. bounded.

04-06-2024

N-continued fractions

Let $N \in \mathbb{N}_{>1}$. We can write any $x \in [0, N]$ as

$$x=rac{N}{d_1(x)+rac{N}{d_2(x)+\cdots}}.$$

In fact, we can do this in many different ways.

$$y = \frac{N}{x} - d \to x = \frac{N}{d+y}$$

As long as $d\geq 1$ and $y\in [0,N]$ we can continue.

N-continued fractions

Let $N \in \mathbb{N}_{>1}$. We can write any $x \in [0, N]$ as

$$x=rac{N}{d_1(x)+rac{N}{d_2(x)+\cdots}}.$$

In fact, we can do this in many different ways.

$$y = \frac{N}{x} - d \to x = \frac{N}{d+y}$$

As long as $d \ge 1$ and $y \in [0, N]$ we can continue.

Graph of the branches for N = 5

Making choices

You can choose the branches randomly or follow a certain rule.

- Choose the highest digit possible (greedy).
- Choose the lowest digit possible (lazy).
- Pick the digits that are 1 mod N.
- Pick an interval of length 1 such that $y = \frac{N}{x} d$ is always in the interval.

Different choices, different properties.

Making choices

You can choose the branches randomly or follow a certain rule.

- Choose the highest digit possible (greedy).
- Choose the lowest digit possible (lazy).
- Pick the digits that are 1 mod N.
- Pick an interval of length 1 such that $y = \frac{N}{x} d$ is always in the interval.

Different choices, different properties.

(N, α) -continued fractions

Let $N \in \mathbb{N}_{>1}$ and $\alpha \in (0, \sqrt{N} - 1]$ and define $T_{N,\alpha} : [\alpha, \alpha + 1] \rightarrow [\alpha, \alpha + 1)$ as

$$T_{N,\alpha}(x) = \frac{N}{x} - \left\lfloor \frac{N}{x} - \alpha \right\rfloor$$

$$x = \frac{N}{d_1(x) + \frac{N}{d_2(x) + \cdots}}$$

Introduced and studied by Kraaikamp, L. in 2016. Later studied by Chen, de Jonge, Kraaikamp, Nakada, L.,

Graph of the maps

Periodic points

Periodic points are sometimes rational, sometimes not. Examples:

- For $\alpha \in (0,1) \cap (0,\sqrt{N}-1]$ we have $1 = [0; \overline{N-1}]_N$ as solution to $x = \frac{N}{N-1+x}$.
- For N = 2 and $\alpha \in (0, \sqrt{2} 1]$ we have $\frac{-3 + \sqrt{17}}{2} = [0; \overline{3}]_2$.
- For N = 3 and $\alpha = 0.73$ the number $\frac{40}{33}$ is eventually periodic with a pre-period of length 63 and period length 38.

Rational numbers are sometimes periodic, sometimes not.

- For any N and α sufficiently small, all rationals are eventually periodic with tail $[0; \overline{1}]_N$.
- For *N* = 3, all pre-images of 1 are of course periodic. Unknown whether there are a-periodic rational numbers.
- For N = 7, and α ∈ (1, √7 − 1) all rational numbers are a-periodic (and therefore, all periodic points are quadratic irrationals).

Making the digit set and N co-prime

$$\mathcal{K} = \left\{ (\mathcal{N}, \alpha) : \mathcal{N} \in \mathbb{N}_{\geq 2}, \ \alpha \in (0, \sqrt{\mathcal{N}} - 1] \text{ s.t. } \gcd\{\mathcal{N}, d\} = 1, \ \forall d \in \mathcal{D}_{\mathcal{N}, \alpha} \right\}$$

Quadratic irrationals and their N-continued fr

Non-periodic quadratic irrationals

Theorem (Kraaikamp, L.)

For all $(N, \alpha) \in K$ we have that if $x \in [\alpha, \alpha + 1)$ is an irrational solution to $Ax^2 + Bx + C = 0$ with $A, B, C \in \mathbb{Z}$ co-prime and gcd(N, C) = 1 then x has an a-periodic (N, α) -expansion.

The recurrence relations

Let $x_0 \in [\alpha, \alpha + 1)$ be an irrational solution of

$$A_0 x_0^2 + B_0 x_0 + C_0 = 0 (8)$$

with $A_0, B_0, C_0 \in \mathbb{Z}$ and define $x_n = T_{\alpha}^n(x)$. Then the coefficients for x_{n+1} are given by

$$A_{n+1} = C_n \tag{9}$$

$$B_{n+1} = NB_n + 2d_{n+1}C_n (10)$$

$$C_{n+1} = N^2 A_n + N B_n d_{n+1} + C_n d_{n+1}^2$$
(11)

For the determinant we find

$$B_n^2 - 4A_nC_n = N^{2n}(B_0^2 - 4A_0C_0).$$
(12)

04-06-2024

A_n, B_n, C_n are always co-prime

Fix $(N, \alpha) \in K$. For *p* prime, with gcd(p, N) = 1: Suppose the contrary and let *n* be the first time that *p* divides A_{n+1}, B_{n+1} and C_{n+1} . Then

$$\begin{aligned} A_{n+1} &= p\widehat{A}_{n+1} = C_n & \text{gives} \quad C_n \equiv 0 \pmod{p}, \\ B_{n+1} &= p\widehat{B}_{n+1} = NB_n + 2d_nC_n & \text{gives} \quad B_n \equiv 0 \pmod{p}, \\ C_{n+1} &= p\widehat{C}_{n+1} = N^2A_n + NB_nd_n + C_nd_n^2 & \text{gives} \quad A_n \equiv 0 \pmod{p}. \end{aligned}$$

 \rightarrow contradiction with minimality of *n*. For *p* prime, with gcd(p, N) > 1:

$$C_n \not\equiv 0 \pmod{p} \text{ gives } \begin{cases} A_{n+1} \not\equiv 0 \pmod{p}, \\ B_{n+1} \not\equiv 0 \pmod{p}, \\ C_{n+1} \not\equiv 0 \pmod{p}. \end{cases}$$

In this case we find that p does not divide A_{n+1} , B_{n+1} and C_{n+1} by induction.

Some remarks

- We can also prove that there are no matching intervals within K.
- The proof works as long as all digits and C are co-prime with N.
- For every N there are also quadratic irrationals with infinitely many *different* periodic N-continued fraction expansions. (In order to prove this you can use matching.)
- For the greedy (and lazy) N-continued fraction it is an open problem whether there exist a-periodic quadratic irrationals.

04-06-2024

Quadratic irrationals and their N-continued fr

04-06-2024