Confluent alternate numeration systems

Savinien Kreczman

Joint work with Émilie Charlier, Zuzana Masáková and Edita Pelantová

June 2024

Represent numbers by words using a base β . The word $a_n \cdots a_0 a_{-1} a_{-2} \cdots$ has value

$$\sum_{j=0}^n a_j \beta^j + \sum_{j=1}^\infty a_{-j} \beta^{-j}$$

$$= \sum_{j=0}^{n} (a_{j} \prod_{i=0}^{j-1} \beta) + \sum_{j=1}^{\infty} (a_{-j} \prod_{i=-1}^{-j} \beta^{-1})$$

Generalise from the base sequence \ldots , β , β , \ldots to the sequence \ldots , β_1 , β_0 , β_{-1} , \ldots . The word $a_n \cdots a_0$, $a_{-1}a_{-2} \cdots$ has value

$$\sum_{j=0}^{n} (a_{j} \prod_{i=0}^{j-1} \beta_{i}) + \sum_{j=1}^{\infty} (a_{-j} \prod_{i=-1}^{-j} \beta_{i}^{-1}).$$

Alternate numeration system: the base sequence is periodic.

Different words may have the same value.

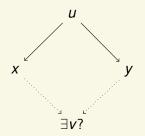
Base $(\ldots, 10, 10, 10, \ldots)$: the words 1.0^{ω} and 0.9^{ω} both have value 1.

Base $(..., \beta_1, \beta_0, \beta_1, \beta_0, \beta_1, ...)$ with $\beta_1 = \frac{5 + \sqrt{13}}{6}$ and $\beta_0 = \frac{1 + \sqrt{13}}{2}$: the words 1001.010^{ω} and 210.0^{ω} both have value $(7 + 3\sqrt{13})/2$.

Define a system of *rewriting rules* with the aim of reducing words that have the same value to a common word that would canonically represent this value.

 $\textbf{210.0}^{\omega}\leftrightarrow\textbf{202.010}^{\omega}\leftrightarrow\textbf{1001.010}^{\omega}$

Study the *confluence* of this rewriting system.



We define a way to associate with an alternate numeration system ${\cal N}$ a rewriting system ${\cal R},$ and we obtain the following result.

Proposition

The system \mathcal{R} is confluent if and only if in \mathcal{N} , all but the last digit of every greedy representation of 1 take their maximal allowable value.