Number systems in imaginary quadratic fields

Jakub Krásenský joint work with Attila Kovács

Czech Technical University in Prague

June 4, 2024

Theorem (Penney, '60s)

Let $\beta = -1 + \mathrm{i}.$ Then every $x \in \mathbb{Z}[\mathrm{i}]$ can be uniquely written as

$$x=\sum_{j=0}^{N}eta^{j}a_{j},\qquad$$
 where $N\in\mathbb{N}_{0},a_{j}\in\{0,1\},a_{N}
eq0.$

For example, $-1 = \beta^4 + \beta^3 + \beta^2 + 1$.

On the other hand, for $\beta = 1 + i$ and $\mathcal{A} = \{0, 1\}$, there is no representation of i.

This allows a representation of every complex number:

Black: Numbers with representation of the form $0 + \sum_{j=-1}^{-\infty} \beta^j a_j$ in Penney's number system.

Theorem (Penney, '60s)

Let $\beta = -1 + i$. Then every $x \in \mathbb{Z}[i]$ can be uniquely written as

$$x=\sum_{j=0}^{N}eta^{j}a_{j},\qquad$$
 where $N\in\mathbb{N}_{0},a_{j}\in\{0,1\},a_{N}
eq0.$

The red conditions \rightarrow so-called *GNS* (with *radix* β). E.g. $\beta = 3$, $\mathcal{A} = \{-1, 0, 1\}$ or $\beta = -2$, $\mathcal{A} = \{0, 1\}$ over \mathbb{Z} .

- Kátai, Szabó, '75: Characterisation of radices of canonical GNSs over ℤ[i]. (A = {0, 1, ..., n}.)
- Steidl, '89: Characterisation of radices of GNSs over $\mathbb{Z}[i]$.
- Kátai, '93: The same for all \mathcal{O}_K for K imaginary quadratic.

Situation in \mathbb{Z} :

- No GNS with radix 2.
- Radix -2: Good alphabets are $\pm \{0, 1\}$.
- Good alphabets for 3: Difficult open question.
- Matula, 1978: In \mathbb{Z} : If $|\beta|>2,$ then β is a radix of infinitely many GNSs.

Back to imaginary quadratic fields:

Theorem (Kovács, K., '24+)

Let K be an imaginary quadratic field and $\mathcal{O} \subseteq \mathcal{O}_K$ an order. Let $\beta \in \mathcal{O}$. Then:

- β is a radix of a GNS over \mathcal{O} iff $|\beta| \neq 1$, $|1 \beta| \neq 1$.
- β is a radix of infinitely many GNSs over \mathcal{O} iff further $|\beta| \neq 2$.

Open question: Arbitrarily sparse alphabets?

Thank you for your attention (and for any questions)!