Periodic unique codings of fat Sierpinski gasket

Derong Kong
Chonggqing University

Numeration conference, Utrecht, June 5, 2024



Background
Given 3 > 1, let S be the Sierpinski gasket in R? generated by the IFS:

x4 ag T+ o T+ oo
fao () = G foy (%) = 5 fao(7) = 5
where ap = (0,0), @3 = (1,0) and a2 = (0, 1).
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Figure: The figure of the first generation of Sz with 5 = 18/11 ~ 1.63636.



> If 8> 2, the IFS {fa,, fa1, fao | satisfies the SSC.
If 5 € (1,2), then the IFS {fa,, fo1, fas  does not satisfy the OSC.
If 5 <3/2, then Sz = Ag the convex hull.
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> If 8> 2, the IFS {fa,, fa1, fao | satisfies the SSC.
If 5 € (1,2), then the IFS {fa,, fo1, fas  does not satisfy the OSC.
If 5 <3/2, then Sz = Ag the convex hull.

» When § € (3/2,2], we have

log 3
log 3

for a dense set of 5 € (3/2,2]. (Simon and Solomyak, 2003)
» When § € (3/2,2], we also have

1
dimg S3 = min {1;):;72}

for all 8 € (3/2,2] up to a set of zero packing dimension.
(Hochman, 2015)

dim g Sg <

= dims S@



Theorem (Broomhead, Montaldi and Sidorov, 2004)
The following properties of Sg hold.

(1) Let B, ~ 1.543686 be the appropriate root of 5 — 1 +

x3

Then Sg has non-empty interior for all 5 € (1, 5.].
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Theorem (Broomhead, Montaldi and Sidorov, 2004)
The following properties of Sg hold.

(1) Let B =~ 1.543686 be the appropriate root of z% — m% +
Then Sg has non-empty interior for all 5 € (1, 5.].
(2) Sp has zero Lebesgue measure for all § > /3.

(3) Let 8 = p,, be a multinacci number, i.e., the positive root of
1+ L4+ L =1 Then

Tm

8=

dimy S,, = dimg S, = izg Tm 1?;3 ,
Pm Pm

: . 3 3 _
where T, is an appropriate root of = — 25 = 1.
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Theorem (Broomhead, Montaldi and Sidorov, 2004)

The following properties of Sg hold.

(1) Let B, =~ 1.543686 be the appropriate root ofg%3 — m% + % = %
Then Sg has non-empty interior for all 5 € (1, 5.].

(2) Sp has zero Lebesgue measure for all § > /3.

(3) Let 8 = p,, be a multinacci number, i.e., the positive root of
1+ L4+ L =1 Then

xm

dimyg S - = dimp Spm = ingm < li(;gg s
Pm Pm

: . 3 3 _
where T, is an appropriate root of = — 25 = 1.

Remark. Hasselblatt and Plante (2014) proved that Sz has non-empty
interior for all

B € [1.545,1.5456] U [1.5466, 1.5485] U [1.5526, 1.553].

Open question: it is NOT known for a complete characterization of
B € (1.543686,/3) in which Sp has non-empty interior.



Intrinsic univoque set of Ss
Let 8 € (1,2). For d € {ap, a1, 2} we define the expanding map

Tu(x) =B —d, w€ faldp).

Define the intrinsic univoque set by

Uﬁ = {I = ZE S Sﬁ : le.._dn(:zz) ¢ Oo UOiLUOy Vn > 0} s
1=1

where le.“dn = Td71 o Tdn71 O---0 le.
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Note that each z € Ug has a unique coding in {ao,ahag}N. Let

Up = {(di) S {ao,oé1,042}N : Z% € UB} :
=1

Then the projection map 73 : Ug — Ug; (d;) — Doy g— is bijective.
Furthermore, the set-valued map 8 — Ug is non-decreasing.
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Note that each z € Ug has a unique coding in {ao,ahag}N. Let

Uﬁ = {(dl) S {04070513042}1\] : Z% € UB} .
1=1

Then the projection map 73 : Ug — Ug; (d;) — Doy g— is bijective.
Furthermore, the set-valued map 8 — Ug is non-decreasing.

Theorem (Sidorov, 2007)
Let B € (1,2]. Then

#Ug <400 <<= [<faq,

where B¢ ~ 1.46557 is a root of 2> — 22 — 1 = 0.

Theorem (K. and Li, 2020)

There exists a transcendental number 3. ~ 1.55263 such that
(1) if B € (Ba, Be), then Ug is countably infinite;

(2) if B = B., then Ug is uncountably and dimy Ug = 0,
(3) if B € (B¢, 2), then dimpy Ug > 0



Comparison with unique g-expansion in R

Given ¢ € (1,2], each z € [0, -2

, ——] can be written as
q—1

o0
€i
.T,‘:E -

PR
i=1 q

where the sequence (¢;) = €1e5... € {0, 1}N is called a g-expansion of z.
Let

1
A, = {x e [o, 71} : x has a unique ¢ — expansion} .
q—
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For ¢ € (1,2] we define the symbolic univoque set

o0
N 1)
A, = {(51«) e {0,1} " : Zq—z € Aq}.
i=1
Then the projection map 7, : Ay — Ag; (g5) — Doy <t is bijective.
Furthermore, the set-valued map g — A, is non-decreasing.
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i=1
Then the projection map 7, : Ay — Ag; (g5) — Doy <t is bijective.
Furthermore, the set-valued map g — A, is non-decreasing.
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Let g € (1,2]. Then
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For ¢ € (1,2] we define the symbolic univoque set

A, = {(ei) e {0,1}": iz € Aq}.

i=1
Then the projection map 7, : Ay — Ag; (g5) — Doy <t is bijective.
Furthermore, the set-valued map g — A, is non-decreasing.

Theorem (Erdés, Joé and Komornik, 1990)
Let g € (1,2]. Then

1+
2

=

#A; <40 = g¢<

Theorem (Glendinning and Sidorov, 2001)

There exists a transcendental number qi 1, ~ 1.78723 (known as the
Komornik-Loreti constant) such that

(1) ifqe (HQ‘/g,qKL), then A, is countably infinite;
(2) if g = gk, then A, is uncountable and dimy A, = 0;
(3) ifq € (¢xr,2), then dimy A, > 0.



Note that the set-valued map ¢ — A, is non-decreasing. For k € N let

gr =1inf {qg € (1,2] : A, contains a sequence of smallest period k} .



Note that the set-valued map ¢ — A, is non-decreasing. For k € N let

gr =1inf {qg € (1,2] : A, contains a sequence of smallest period k} .

Theorem (Allouche, Clark and Sidorov, 2009)

Each base q;, can be explicitly determined. Furthermore,
Q@ >qg <= (>k,

where > is the Sharkovskii order defined as

3 > ) > 7 o 2m+1 >
> 23 > 25 > 27 > ... > 22m+1) >
> 2.3 > 2.5 > 2".7 > ... > 2"2m+1) >

> 8 > 4 > 2 > L

Remark: Let f: R — R be a continuous map. If k> £ in Sharkovskii
ordering and if f has a point of smallest period k, then f has a point of
smallest period ¢. (Sharkovskii, 1964)



Our question
Back to the unique codings in fat Sierpinski gasket

Up = {(di) € {ag, o, a2} : Z% € UB}-
=1

Note that 3 — Ug is non-decreasing. For k € N we define
B :=1inf{f € (1,2] : Ug contains a sequence of smallest period k} .

Question: can we determine [ for each k € N?
Does the sequence (8x) also satisfy the Sharkovskii order?
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Characterization of Ug
Recall that ag = (0,0), a1 = (1,0), a3 = (0,1). For
d= (d',d?) € {ag,a1,a2} we set d® := 1 — (d* + d?). Then

d',d*,d® € {0,1} and d'+d*+d®=1.
Proposition (K. and Li, 2020)
(d;) € Ug if and only if the sequences (d}), (d2), (d®) € {0,1}" satisfy
Cnt1Cni2.-.- <0(B) if ¢, =0,

where §(5) = d1(5)d2(B) ... is the quasi-greedy [3-expansion of 1.



Characterization of Ug
Recall that ag = (0,0), a1 = (1,0), a3 = (0,1). For
d= (d',d?) € {ag,a1,a2} we set d® := 1 — (d* + d?). Then

d',d*,d® € {0,1} and d'+d*+d®=1.
Proposition (K. and Li, 2020)
(d;) € Ug if and only if the sequences (d}), (d2), (d®) € {0,1}" satisfy
Cnt1Cni2.-.- <0(B) if ¢, =0,
where §(5) = d1(5)d2(B) ... is the quasi-greedy [3-expansion of 1.

Example
Let 8 = 145 Then §(8) = (10)>°, and

didy...ds \ "~ 10100 \ *
(arazaragag)® ~ | dids...d3 = 01001 :
dy ds ...d¢

So, (d;) = (apazarapaz)™ € Ug.



Generalized Thue-Morse sequence
We define a sequence (t,,) of blocks in {0,1}". Let t; = 100, and let

thr =t O vn>1,
where the block map © is defined on £ := {000, 001, 100, 101} by
©:Q—Q; 000+~ 101, 001 — 100, 100 — 001, 101 ~ 000.
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Generalized Thue-Morse sequence
We define a sequence (t,,) of blocks in {0,1}". Let t; = 100, and let

thr =t O vn>1,
where the block map © is defined on £ := {000, 001, 100, 101} by
©:Q—Q; 000+~ 101, 001 — 100, 100 — 001, 101 ~ 000.

Example

t; = 100,

ty = 101000,

t3 = 101001 000100,

t, = 101001000101 000100101000.

The sequence (t,,) induces a unique componentwise limit

(A\) = lim t, = 101001000101 ... € {0,1}".

n—oQ



Main result

Theorem (K. and Zhang, 2024)

(1) B =1and 8, = 255,

(2) If k € 3N, then k = 3(2m + 1)2™ for some m,n € Ny, and thus

o if m=0,
5(ﬂ3(2m+1)2") = { (til @(t+ )tm_l)oo Zf m 2 1.

429ty 1)ty po
Furthermore,
B3k > B3¢ <= k>{ in Sharkovskii order.
(3) Ifk=30+1¢€3N+1, then
8(Bse+1) = (101(001)- =7 (010) = o).
(4) Ifk =30+2 € 3N +2, then

8(Bars2) = (101(001)°~100)>.



Remark
» Each ) is a Perron number (Blanchard, 1989).
» Note that for £ = 2m + 1 with m € N we have
6(B3zm+1)+1) = (101(001)™(010)™0)>
= (101(001)™7100)> = 6(B3m12)-

So,
Bém+4 = B3mso for any m > 0.
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Asymptotic behavior of (f3)

V
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Asymptotic behavior of (83,41) and (Ps¢42)
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Figure: Left: the graph of B3¢+1 with 1 < £ < 20; right: the graph of [3¢42

with 1 < ¢ < 20. Indeed, Bsrr1 \( Ba, Baet2 \ Ba as £ — 0o, where
Ba ~ 1.55898.

Therefore, for any £ € N we have

B3 < Bae < Bo < Ba < P41, Pae42 < Pa = L+ V5

where B9 ~ 1.55392.
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Lemma
For any k € N we have

Sketch of the proof. First we prove [y > # Suppose on the contrary
Ba < 1+T\/g Then U,, s contains a sequence of smallest period 2. By

2
symmetry we assume (d;) = (1) € U,y 5. Then
2
oo

0 1
U,, s> (aooq)oo ~ 0 0
’ 10

This contradicts to the property for (d}) that

1+5
2

Cnt1Cnt2 - < 0( )= (10)> if ¢, =0.

So, B2 > 1+T\/5



Proof continu. Next we prove 8y < 1+T\/g for all K € N. Take 8 > 1"'2—\/5
Then §(5) > (10)*°. It suffices to show that for each k € N the set Ug
contains a sequence of smallest period k. Easy to see that

ag’, (apon)™ € Ug.



Proof continu. Next we prove 8y < 1+T\/g for all K € N. Take 8 > 1"'2—\/5
Then §(5) > (10)*°. It suffices to show that for each k € N the set Ug
contains a sequence of smallest period k. Easy to see that

ag’, (apon)™ € Ug.
» If k=3¢ ¢ 3N, then

Uﬂ > ((aoalag)e_lalaoag)oo ~

= o O
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Proof continu. Next we prove 8y < 1+T\/g for all K € N. Take 8 > 1"'2—\/5
Then §(5) > (10)*°. It suffices to show that for each k € N the set Ug
contains a sequence of smallest period k. Easy to see that

ag’, (apon)™ € Ug.

> If k=3¢ € 3N, then

0 1 0 1 0 0
Uﬂ = ((aoalag)e_lalaoag)oo ~ 0 0 1 0 0 1
1 0 0 01 0
> Ifk=3(+1€3N+1, then

U[g > ((aoalag)eal)oo ~

—_ o O

o O =

O = O
(@)



Proof continu. Next we prove 8y < 1+T\/g for all K € N. Take 8 > 1"'2—\/5
Then §(5) > (10)*°. It suffices to show that for each k € N the set Ug
contains a sequence of smallest period k. Easy to see that

ag’, (apon)™ € Ug.

> If k=3¢ € 3N, then

010 1 00
U,@B((aoalag)e_lalaoag)oow 0 0 1 0 0 1
1 00 010
» If k=30+1¢€ 3N+1, then
010\ /1\)\
U[g = ((aoalag)eal)oo ~ 0 0 1 0
1 00 0
» If k=3/+2¢c 3N+ 2, then
01 0\ /0 1\\
Up > ((aparan)fapar)™ ~ 0 0 1 00
1 00 10



Algorithm for a general (3,
For k € N>y let (d;) = (dv...dy)™ € {o&al,ag}N be a sequence of
smallest period k. Then (d}), (d?) and (d5°) are three new periodic
. N .
sequences in {0,1}". Define

k—1

(di) = max | J {o"((a})), " (@), 0" () }

n=0

Then by the characterization of Ug it follows that

(dl) = (dl . ..dk)oo cUy <= 5(ﬁ) - (CL)



Algorithm for a general (3,
For k € N>y let (d;) = (dv...dy)™ € {o&al,ag}N be a sequence of
smallest period k. Then (d}), (d?) and (d5°) are three new periodic
. N .
sequences in {0,1}". Define

k—1

(di) = max | J {o"((a})), " (@), 0" () }

n=0

Then by the characterization of Ug it follows that
(d) = (dy...dp)® €Uy <= 6(B) > (di).
Set
(a;) := min {(CZZ) : (d;) = (dy .. .dg)* has smallest period k} .
It follows that
Ujp contains a sequence of smallest period k& <= 0(8) > (a;).

From this we can deduce that §(8x) = (a;) = (a1 ... ar)®.



» Upper bound: to prove §(8k) < (g1 ...€x) it suffices to show that
for any 6(B3) > (e1...€x) the set Ug contains a sequence
(di...dg)™ of smallest period k.
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for 6(B8) = (e1...€x)™ the set Ug contains no sequence of smallest
period k. This is more challenging!



» Upper bound: to prove §(8k) < (g1 ...€x) it suffices to show that
for any 6(B3) > (e1...€x) the set Ug contains a sequence
(di...dg)™ of smallest period k.

> Lower bound: to prove §(8%) = (£1...£,)°°, we need to show that
for 6(B8) = (e1...€x)™ the set Ug contains no sequence of smallest
period k. This is more challenging!

Definition
A block a; ...a; € {0,1}" is called admissible if there exists an aperiodic
block dy ... dy € {a, a1, a2} such that d}...dL = ay ...ax and
dl ...d,lfd%...d
2 2 12
Zyy . Bd3 . d

A%y, .. d7dY . dP

J

R
Q

1...0% VOS]<I€,
1...ar YVO<j <k,

SO S
A
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a...ag V0§j<k



» Upper bound: to prove §(8k) < (g1 ...€x) it suffices to show that
for any 6(B3) > (e1...€x) the set Ug contains a sequence
(di...dg)™ of smallest period k.

> Lower bound: to prove §(8%) = (£1...£,)°°, we need to show that
for 6(B8) = (e1...€x)™ the set Ug contains no sequence of smallest
period k. This is more challenging!

Definition
A block a; ...a; € {0,1}" is called admissible if there exists an aperiodic
block dy ... dy € {a, a1, a2} such that d}...dL = ay ...ax and

dl» ...d,lfd%...djl»ﬁal...ak Y0 <j <k,
A3,y didy . di < ar.oar YO<G<E,

A%y, .. d7dY . dP

R

a...ag V0§j<k

Difficulty: the representation block dj ... d} is not necessarily unique.
For example, take a; ...as5 = 10100. Then we have two representations

100 101 00
01 0], 01 0 01
0 0 1 0 0 010



Proposition (Key proposition)
Ifay...a3p is an admissible block with £ > 3, and has a prefix

aj ...ag = 101001000,

then ay ...as¢ € B*(X), and it has a unique representation block (up to
rotation) dy ...ds; € {ap, a1, 042}3@ satisfying

d...d=a1.. . a3, d3...d3,=(010)", E...di%:@(al...agg).

(e ()

()——=(m)

Figure: The directed graph representing the subshift of finite type X.



Proof of the key proposition

Since aq ...as3, is admissible, it has a representation
3¢
dy ...dse € {ag, 1,2} . Here we only prove

ay...ag € B*(X) and d3...d5 = (010)>.



Proof of the key proposition
Since aq ...as3, is admissible, it has a representation
di...dsp € {a07a1,a2}3£. Here we only prove

ay...ag € B*(X) and d3...d5 = (010)>.

Note that
di...dy=ai...a9 =101001000 € B*(X),
AP d?+dP =1 v1<i<9.

Suppose d2...d2 = d ...d2. By the definition of admissibility and
using a . ..ag = 101001000 it follows that

11, 10101, 10100101 and 101001001

)

are all forbidden in d...d3,, d?...d3, and df ... dg’}. From this we can
deduce that (needs explanation)

di...d} 101 001 000
di...dj | = 010 010 010
dv...ds 000 100 101



The proof can be proceeded by induction. For this we also need the
following inequalities of generalized Thue-Morse sequence. Recall that

8(B2) = AiAa... = 101001000101 . . .
Let (v;) = ©(A1A2...) = 000100101000. ... Then for any n > 0 we have

Y1 eeeYzon—g < Ajg1 - Agon X AL .. Agan_g,
V1o V3on i = Yigle--V32n <AL Agan

forall 0 <i<3-2™.



Final remarks and future work

The main result can be adapted to a general class of fat Sierpinski gasket
in R? generated by

{fl(m):Am—’_pla f2(1'):>‘x+p23 fg(l’):)\.’[+p3},

where p1, p2, p3 are non-colinear vectors in R?.



Final remarks and future work

The main result can be adapted to a general class of fat Sierpinski gasket
in R? generated by

{fl(m):Ax—’_plv f2(1'):>‘x+p23 f3(1'):>‘x+p3}7

where p1, p2, p3 are non-colinear vectors in R?.

> Extend to more general planar self-similar sets with overlaps, and
consider the associated periodic points.

» Extend to higher dimensional fat Sierpinski gasket or self-similar sets
with overlaps.

» Study one parameter family of open dynamical systems, and
determine the critical parameter in which the open dynamical system
contains a point of smallest period k.



THANK YOU!



