# Periodic unique codings of fat Sierpinski gasket

Derong Kong

Chongqing University

Numeration conference, Utrecht, June 5, 2024

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

# Background

Given  $\beta > 1$ , let  $S_{\beta}$  be the Sierpinski gasket in  $\mathbb{R}^2$  generated by the IFS:

$$f_{\alpha_0}(x) = \frac{x + \alpha_0}{\beta}, \quad f_{\alpha_1}(x) = \frac{x + \alpha_1}{\beta}, \quad f_{\alpha_2}(x) = \frac{x + \alpha_2}{\beta},$$

where  $\alpha_0 = (0,0), \alpha_1 = (1,0)$  and  $\alpha_2 = (0,1)$ .



Figure: The figure of the first generation of  $S_{\beta}$  with  $\beta = 18/11 \approx 1.63636$ .

・ロト・西ト・山田・山田・山口・

• If  $\beta > 2$ , the IFS  $\{f_{\alpha_0}, f_{\alpha_1}, f_{\alpha_2}\}$  satisfies the SSC. If  $\beta \in (1, 2)$ , then the IFS  $\{f_{\alpha_0}, f_{\alpha_1}, f_{\alpha_2}\}$  does not satisfy the OSC. If  $\beta \leq 3/2$ , then  $S_{\beta} = \Delta_{\beta}$  the convex hull.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

• If  $\beta > 2$ , the IFS  $\{f_{\alpha_0}, f_{\alpha_1}, f_{\alpha_2}\}$  satisfies the SSC. If  $\beta \in (1, 2)$ , then the IFS  $\{f_{\alpha_0}, f_{\alpha_1}, f_{\alpha_2}\}$  does not satisfy the OSC. If  $\beta \leq 3/2$ , then  $S_{\beta} = \Delta_{\beta}$  the convex hull.

▶ When  $\beta \in (3/2, 2]$ , we have

$$\dim_H S_\beta < \frac{\log 3}{\log \beta} = \dim_S S_\beta$$

for a dense set of  $\beta \in (3/2, 2]$ . (Simon and Solomyak, 2003)

• If  $\beta > 2$ , the IFS  $\{f_{\alpha_0}, f_{\alpha_1}, f_{\alpha_2}\}$  satisfies the SSC. If  $\beta \in (1, 2)$ , then the IFS  $\{f_{\alpha_0}, f_{\alpha_1}, f_{\alpha_2}\}$  does not satisfy the OSC. If  $\beta \leq 3/2$ , then  $S_{\beta} = \Delta_{\beta}$  the convex hull.

• When  $\beta \in (3/2, 2]$ , we have

$$\dim_H S_\beta < \frac{\log 3}{\log \beta} = \dim_S S_\beta$$

for a dense set of  $\beta \in (3/2, 2]$ . (Simon and Solomyak, 2003) • When  $\beta \in (3/2, 2]$ , we also have

$$\dim_H S_\beta = \min\left\{\frac{\log 3}{\log \beta}, 2\right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for all  $\beta \in (3/2,2]$  up to a set of zero packing dimension. (Hochman, 2015)

The following properties of  $S_{\beta}$  hold.

(1) Let  $\beta_* \approx 1.543686$  be the appropriate root of  $\frac{1}{x^3} - \frac{1}{x^2} + \frac{1}{x} = \frac{1}{2}$ . Then  $S_\beta$  has non-empty interior for all  $\beta \in (1, \beta_*]$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The following properties of  $S_{\beta}$  hold.

(1) Let  $\beta_* \approx 1.543686$  be the appropriate root of  $\frac{1}{x^3} - \frac{1}{x^2} + \frac{1}{x} = \frac{1}{2}$ . Then  $S_\beta$  has non-empty interior for all  $\beta \in (1, \beta_*]$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(2)  $S_{\beta}$  has zero Lebesgue measure for all  $\beta > \sqrt{3}$ .

The following properties of  $S_{\beta}$  hold.

- (1) Let  $\beta_* \approx 1.543686$  be the appropriate root of  $\frac{1}{x^3} \frac{1}{x^2} + \frac{1}{x} = \frac{1}{2}$ . Then  $S_\beta$  has non-empty interior for all  $\beta \in (1, \beta_*]$ .
- (2)  $S_{\beta}$  has zero Lebesgue measure for all  $\beta > \sqrt{3}$ .
- (3) Let  $\beta = \rho_m$  be a multinacci number, i.e., the positive root of  $\frac{1}{x} + \frac{1}{x^2} + \dots + \frac{1}{x^m} = 1$ . Then

$$\dim_H S_{\rho_m} = \dim_B S_{\rho_m} = \frac{\log \tau_m}{\log \rho_m} < \frac{\log 3}{\log \rho_m},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where  $\tau_m$  is an appropriate root of  $\frac{3}{x} - \frac{3}{x^{m+1}} = 1$ .

The following properties of  $S_{\beta}$  hold.

- (1) Let  $\beta_* \approx 1.543686$  be the appropriate root of  $\frac{1}{x^3} \frac{1}{x^2} + \frac{1}{x} = \frac{1}{2}$ . Then  $S_\beta$  has non-empty interior for all  $\beta \in (1, \beta_*]$ .
- (2)  $S_{\beta}$  has zero Lebesgue measure for all  $\beta > \sqrt{3}$ .
- (3) Let  $\beta = \rho_m$  be a multinacci number, i.e., the positive root of  $\frac{1}{x} + \frac{1}{x^2} + \dots + \frac{1}{x^m} = 1$ . Then

$$\dim_H S_{\rho_m} = \dim_B S_{\rho_m} = \frac{\log \tau_m}{\log \rho_m} < \frac{\log 3}{\log \rho_m},$$

where  $\tau_m$  is an appropriate root of  $\frac{3}{x} - \frac{3}{x^{m+1}} = 1$ .

Remark. Hasselblatt and Plante (2014) proved that  $S_{\beta}$  has non-empty interior for all

 $\beta \in [1.545, 1.5456] \cup [1.5466, 1.5485] \cup [1.5526, 1.553].$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Open question: it is NOT known for a complete characterization of  $\beta \in (1.543686, \sqrt{3})$  in which  $S_{\beta}$  has non-empty interior.

### Intrinsic univoque set of $S_{\beta}$

Let  $\beta \in (1,2)$ . For  $d \in \{\alpha_0, \alpha_1, \alpha_2\}$  we define the expanding map

$$T_d(x) = \beta x - d, \quad x \in f_d(\Delta_\beta).$$

Define the intrinsic univoque set by

$$U_{\beta} := \left\{ x = \sum_{i=1}^{\infty} \frac{d_i}{\beta^i} \in S_{\beta} : T_{d_1 \dots d_n}(x) \notin O_0 \cup O_1 \cup O_2 \ \forall n \ge 0 \right\},$$

where  $T_{d_1...d_n} = T_{d_n} \circ T_{d_{n-1}} \circ \cdots \circ T_{d_1}$ .



э

Note that each  $x \in U_{\beta}$  has a unique coding in  $\{\alpha_0, \alpha_1, \alpha_2\}^{\mathbb{N}}$ . Let

$$\mathbf{U}_{\beta} := \left\{ (d_i) \in \{\alpha_0, \alpha_1, \alpha_2\}^{\mathbb{N}} : \sum_{i=1}^{\infty} \frac{d_i}{\beta^i} \in U_{\beta} \right\}.$$

Then the projection map  $\pi_{\beta} : \mathbf{U}_{\beta} \to U_{\beta}; \ (d_i) \mapsto \sum_{i=1}^{\infty} \frac{d_i}{\beta^i}$  is bijective. Furthermore, the set-valued map  $\beta \mapsto \mathbf{U}_{\beta}$  is non-decreasing.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Note that each  $x \in U_{\beta}$  has a unique coding in  $\{\alpha_0, \alpha_1, \alpha_2\}^{\mathbb{N}}$ . Let

$$\mathbf{U}_{\beta} := \left\{ (d_i) \in \{\alpha_0, \alpha_1, \alpha_2\}^{\mathbb{N}} : \sum_{i=1}^{\infty} \frac{d_i}{\beta^i} \in U_{\beta} \right\}.$$

Then the projection map  $\pi_{\beta}: \mathbf{U}_{\beta} \to U_{\beta}; \ (d_i) \mapsto \sum_{i=1}^{\infty} \frac{d_i}{\beta^i}$  is bijective. Furthermore, the set-valued map  $\beta \mapsto \mathbf{U}_{\beta}$  is non-decreasing.

Theorem (Sidorov, 2007) Let  $\beta \in (1,2]$ . Then

$$\#\mathbf{U}_{\beta} < +\infty \quad \Longleftrightarrow \quad \beta \leq \beta_G,$$

where  $\beta_G \approx 1.46557$  is a root of  $x^3 - x^2 - 1 = 0$ .

Note that each  $x \in U_{\beta}$  has a unique coding in  $\{\alpha_0, \alpha_1, \alpha_2\}^{\mathbb{N}}$ . Let

$$\mathbf{U}_{\beta} := \left\{ (d_i) \in \{\alpha_0, \alpha_1, \alpha_2\}^{\mathbb{N}} : \sum_{i=1}^{\infty} \frac{d_i}{\beta^i} \in U_{\beta} \right\}.$$

Then the projection map  $\pi_{\beta} : \mathbf{U}_{\beta} \to U_{\beta}; \ (d_i) \mapsto \sum_{i=1}^{\infty} \frac{d_i}{\beta^i}$  is bijective. Furthermore, the set-valued map  $\beta \mapsto \mathbf{U}_{\beta}$  is non-decreasing.

Theorem (Sidorov, 2007) Let  $\beta \in (1,2]$ . Then

$$\#\mathbf{U}_{\beta} < +\infty \quad \Longleftrightarrow \quad \beta \leq \beta_G,$$

where  $\beta_G \approx 1.46557$  is a root of  $x^3 - x^2 - 1 = 0$ .

### Theorem (K. and Li, 2020)

There exists a transcendental number  $\beta_c \approx 1.55263$  such that

- (1) if  $\beta \in (\beta_G, \beta_c)$ , then  $\mathbf{U}_{\beta}$  is countably infinite;
- (2) if  $\beta = \beta_c$ , then  $\mathbf{U}_{\beta}$  is uncountably and  $\dim_H \mathbf{U}_{\beta} = 0$ ;
- (3) if  $\beta \in (\beta_c, 2)$ , then  $\dim_H \mathbf{U}_{\beta} > 0$

Comparison with unique q-expansion in  $\mathbb{R}$ Given  $q \in (1, 2]$ , each  $x \in [0, \frac{1}{q-1}]$  can be written as

$$x = \sum_{i=1}^{\infty} \frac{\varepsilon_i}{q^i},$$

where the sequence  $(\varepsilon_i) = \varepsilon_1 \varepsilon_2 \ldots \in \{0,1\}^{\mathbb{N}}$  is called a *q*-expansion of *x*. Let

$$A_q := \left\{ x \in [0, \frac{1}{q-1}] : x \text{ has a unique } q - \text{expansion} \right\}.$$



For  $q \in (1,2]$  we define the symbolic univoque set

$$\mathbf{A}_q := \left\{ (\varepsilon_i) \in \{0,1\}^{\mathbb{N}} : \sum_{i=1}^{\infty} \frac{\varepsilon_i}{q^i} \in A_q \right\}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Then the projection map  $\pi_q : \mathbf{A}_q \to A_q$ ;  $(\varepsilon_i) \mapsto \sum_{i=1}^{\infty} \frac{\varepsilon_i}{q^i}$  is bijective. Furthermore, the set-valued map  $q \mapsto \mathbf{A}_q$  is non-decreasing. For  $q \in (1,2]$  we define the symbolic univoque set

$$\mathbf{A}_q := \left\{ (\varepsilon_i) \in \{0,1\}^{\mathbb{N}} : \sum_{i=1}^{\infty} \frac{\varepsilon_i}{q^i} \in A_q \right\}.$$

Then the projection map  $\pi_q : \mathbf{A}_q \to A_q$ ;  $(\varepsilon_i) \mapsto \sum_{i=1}^{\infty} \frac{\varepsilon_i}{q^i}$  is bijective. Furthermore, the set-valued map  $q \mapsto \mathbf{A}_q$  is non-decreasing.

Theorem (Erdős, Joó and Komornik, 1990) Let  $q \in (1, 2]$ . Then

$$#\mathbf{A}_q < +\infty \quad \Longleftrightarrow \quad q \le \frac{1+\sqrt{5}}{2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For  $q \in (1,2]$  we define the symbolic univoque set

$$\mathbf{A}_q := \left\{ (\varepsilon_i) \in \{0,1\}^{\mathbb{N}} : \sum_{i=1}^{\infty} \frac{\varepsilon_i}{q^i} \in A_q \right\}.$$

Then the projection map  $\pi_q : \mathbf{A}_q \to A_q$ ;  $(\varepsilon_i) \mapsto \sum_{i=1}^{\infty} \frac{\varepsilon_i}{q^i}$  is bijective. Furthermore, the set-valued map  $q \mapsto \mathbf{A}_q$  is non-decreasing.

Theorem (Erdős, Joó and Komornik, 1990) Let  $q \in (1, 2]$ . Then

$$#\mathbf{A}_q < +\infty \quad \Longleftrightarrow \quad q \le \frac{1+\sqrt{5}}{2}.$$

### Theorem (Glendinning and Sidorov, 2001)

There exists a transcendental number  $q_{KL} \approx 1.78723$  (known as the Komornik-Loreti constant) such that

(1) if 
$$q \in (\frac{1+\sqrt{5}}{2}, q_{KL})$$
, then  $\mathbf{A}_q$  is countably infinite;

(2) if 
$$q = q_{KL}$$
, then  $A_q$  is uncountable and  $\dim_H \mathbf{A}_q = 0$ ;

(3) if  $q \in (q_{KL}, 2)$ , then  $\dim_H \mathbf{A}_q > 0$ .

Note that the set-valued map  $q \mapsto \mathbf{A}_q$  is non-decreasing. For  $k \in \mathbb{N}$  let  $q_k := \inf \{q \in (1,2] : \mathbf{A}_q \text{ contains a sequence of smallest period } k\}.$ 

Note that the set-valued map  $q \mapsto \mathbf{A}_q$  is non-decreasing. For  $k \in \mathbb{N}$  let  $q_k := \inf \{q \in (1, 2] : \mathbf{A}_q \text{ contains a sequence of smallest period } k\}.$ 

Theorem (Allouche, Clark and Sidorov, 2009) Each base  $q_k$  can be explicitly determined. Furthermore,

$$q_\ell > q_k \quad \Longleftrightarrow \quad \ell \rhd k,$$

where  $\triangleright$  is the Sharkovskii order defined as

**Remark:** Let  $f : \mathbb{R} \to \mathbb{R}$  be a continuous map. If  $k \triangleright \ell$  in Sharkovskii ordering and if f has a point of smallest period k, then f has a point of smallest period  $\ell$ . (Sharkovskii, 1964)

# Our question

Back to the unique codings in fat Sierpinski gasket

$$\mathbf{U}_{\beta} = \left\{ (d_i) \in \{\alpha_0, \alpha_1, \alpha_2\}^{\mathbb{N}} : \sum_{i=1}^{\infty} \frac{d_i}{\beta^i} \in U_{\beta} \right\}.$$

Note that  $\beta \mapsto \mathbf{U}_{\beta}$  is non-decreasing. For  $k \in \mathbb{N}$  we define

 $\beta_k := \inf \{\beta \in (1,2] : \mathbf{U}_\beta \text{ contains a sequence of smallest period } k\}.$ Question: can we determine  $\beta_k$  for each  $k \in \mathbb{N}$ ? Does the sequence  $(\beta_k)$  also satisfy the Sharkovskii order?



# Characterization of $\mathbf{U}_{\beta}$

Recall that  $\alpha_0 = (0,0), \alpha_1 = (1,0), \alpha_2 = (0,1)$ . For  $d = (d^1, d^2) \in \{\alpha_0, \alpha_1, \alpha_2\}$  we set  $\overline{d^{\oplus}} := 1 - (d^1 + d^2)$ . Then  $d^1, d^2, \overline{d^{\oplus}} \in \{0,1\}$  and  $d^1 + d^2 + \overline{d^{\oplus}} = 1$ .

Proposition (K. and Li, 2020)  $(d_i) \in \mathbf{U}_{\beta}$  if and only if the sequences  $(d_i^1), (d_i^2), (\overline{d_i^{\oplus}}) \in \{0, 1\}^{\mathbb{N}}$  satisfy  $c_{n+1}c_{n+2} \ldots \prec \delta(\beta)$  if  $c_n = 0$ ,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where  $\delta(\beta) = \delta_1(\beta) d_2(\beta) \dots$  is the quasi-greedy  $\beta$ -expansion of 1.

# Characterization of $\mathbf{U}_{\beta}$

$$\begin{split} \text{Recall that } & \alpha_0 = (0,0), \alpha_1 = (1,0), \alpha_2 = (0,1). \text{ For} \\ & d = (d^1,d^2) \in \{\alpha_0,\alpha_1,\alpha_2\} \text{ we set } \overline{d^{\oplus}} := 1 - (d^1 + d^2). \text{ Then} \\ & d^1,d^2, \overline{d^{\oplus}} \in \{0,1\} \quad \text{and} \quad d^1 + d^2 + \overline{d^{\oplus}} = 1. \end{split}$$

Proposition (K. and Li, 2020)  $(d_i) \in \mathbf{U}_{\beta}$  if and only if the sequences  $(d_i^1), (d_i^2), (\overline{d_i^{\oplus}}) \in \{0, 1\}^{\mathbb{N}}$  satisfy  $c_{n+1}c_{n+2} \ldots \prec \delta(\beta)$  if  $c_n = 0$ ,

where  $\delta(\beta) = \delta_1(\beta) d_2(\beta) \dots$  is the quasi-greedy  $\beta$ -expansion of 1.

### Example

Let  $\beta=\frac{1+\sqrt{5}}{2}.$  Then  $\delta(\beta)=(10)^\infty,$  and

$$(\alpha_1 \alpha_2 \alpha_1 \alpha_0 \alpha_2)^{\infty} \sim \left(\begin{array}{c} d_1^1 d_2^1 \dots d_5^1 \\ d_1^2 d_2^2 \dots d_5^2 \\ \overline{d_1^{\oplus}} d_2^{\oplus} \dots \overline{d_5^{\oplus}} \end{array}\right)^{\infty} = \left(\begin{array}{c} 10100 \\ 01001 \\ 00010 \end{array}\right)^{\infty}$$

So,  $(d_i) = (\alpha_1 \alpha_2 \alpha_1 \alpha_0 \alpha_2)^{\infty} \in \mathbf{U}_{\beta}.$ 

# Generalized Thue-Morse sequence

We define a sequence  $(\mathbf{t}_n)$  of blocks in  $\{0,1\}^*$ . Let  $\mathbf{t}_1 = 100$ , and let

$$\mathbf{t}_{n+1} = \mathbf{t}_n^+ \Theta(\mathbf{t}_n^+) \quad \forall n \ge 1,$$

where the block map  $\Theta$  is defined on  $\Omega := \{000, 001, 100, 101\}$  by

 $\Theta:\Omega\to\Omega;\quad 000\mapsto 101,\; 001\mapsto 100,\; 100\mapsto 001,\; 101\mapsto 000.$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### Generalized Thue-Morse sequence

We define a sequence  $(\mathbf{t}_n)$  of blocks in  $\{0,1\}^*$ . Let  $\mathbf{t}_1 = 100$ , and let

$$\mathbf{t}_{n+1} = \mathbf{t}_n^+ \Theta(\mathbf{t}_n^+) \quad \forall n \ge 1,$$

where the block map  $\Theta$  is defined on  $\Omega := \{000, 001, 100, 101\}$  by

 $\Theta:\Omega\to\Omega;\quad 000\mapsto 101,\ 001\mapsto 100,\ 100\mapsto 001,\ 101\mapsto 000.$ 

### Example

 $\begin{aligned} \mathbf{t}_1 &= 100, \\ \mathbf{t}_2 &= 101000, \\ \mathbf{t}_3 &= 101001\,000100, \\ \mathbf{t}_4 &= 101001000101\,00010010000. \end{aligned}$ 

# Generalized Thue-Morse sequence

We define a sequence  $(\mathbf{t}_n)$  of blocks in  $\{0,1\}^*$ . Let  $\mathbf{t}_1 = 100$ , and let

$$\mathbf{t}_{n+1} = \mathbf{t}_n^+ \Theta(\mathbf{t}_n^+) \quad \forall n \ge 1,$$

where the block map  $\Theta$  is defined on  $\Omega := \{000, 001, 100, 101\}$  by

 $\Theta:\Omega\to\Omega;\quad 000\mapsto 101,\ 001\mapsto 100,\ 100\mapsto 001,\ 101\mapsto 000.$ 

### Example

$$\begin{aligned} \mathbf{t}_1 &= 100, \\ \mathbf{t}_2 &= 101000, \\ \mathbf{t}_3 &= 101001\,000100, \\ \mathbf{t}_4 &= 101001000101\,00010010000. \end{aligned}$$

The sequence  $(\mathbf{t}_n)$  induces a unique componentwise limit

$$(\lambda_i) = \lim_{n \to \infty} \mathbf{t}_n = 101001000101 \dots \in \{0, 1\}^{\mathbb{N}}.$$

# Main result

Theorem (K. and Zhang, 2024) (1)  $\beta_1 = 1$  and  $\beta_2 = \frac{1+\sqrt{5}}{2}$ . (2) If  $k \in 3\mathbb{N}$ , then  $k = 3(2m+1)2^n$  for some  $m, n \in \mathbb{N}_0$ , and thus

$$\delta(\beta_{3(2m+1)2^n}) = \begin{cases} \mathbf{t}_{n+1}^{\infty} & \text{if } m = 0, \\ \left(\mathbf{t}_{n+2}^+ \Theta(\mathbf{t}_{n+1}^+) \mathbf{t}_{n+2}^{m-1}\right)^{\infty} & \text{if } m \ge 1. \end{cases}$$

Furthermore,

 $\beta_{3k} > \beta_{3\ell} \iff k \triangleright \ell \text{ in Sharkovskii order.}$ 

(3) If  $k = 3\ell + 1 \in 3\mathbb{N} + 1$ , then

$$\delta(\beta_{3\ell+1}) = (101(001)^{\lfloor \frac{\ell-1}{2} \rfloor} (010)^{\lceil \frac{\ell-1}{2} \rceil} 0)^{\infty}.$$

(4) If  $k = 3\ell + 2 \in 3\mathbb{N} + 2$ , then

$$\delta(\beta_{3\ell+2}) = (101(001)^{\ell-1}00)^{\infty}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Remark

- Each  $\beta_k$  is a Perron number (Blanchard, 1989).
- Note that for  $\ell = 2m + 1$  with  $m \in \mathbb{N}$  we have

$$\begin{split} \delta(\beta_{3(2m+1)+1}) &= (101(001)^m (010)^m 0)^\infty \\ &= (101(001)^{m-1} 00)^\infty = \delta(\beta_{3m+2}). \end{split}$$

So,



![](_page_26_Figure_6.jpeg)

# Asymptotic behavior of $(\beta_{3\ell})$

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_3.jpeg)

э

# Asymptotic behavior of $(\beta_{3\ell+1})$ and $(\beta_{3\ell+2})$

![](_page_28_Figure_1.jpeg)

Figure: Left: the graph of  $\beta_{3\ell+1}$  with  $1 \leq \ell \leq 20$ ; right: the graph of  $\beta_{3\ell+2}$  with  $1 \leq \ell \leq 20$ . Indeed,  $\beta_{3\ell+1} \searrow \beta_a$ ,  $\beta_{3\ell+2} \searrow \beta_a$  as  $\ell \to \infty$ , where  $\beta_a \approx 1.55898$ .

Therefore, for any  $\ell \in \mathbb{N}$  we have

$$\beta_3 \le \beta_{3\ell} \le \beta_9 < \beta_a < \beta_{3\ell+1}, \beta_{3\ell+2} \le \beta_2 = \frac{1+\sqrt{5}}{2},$$

イロト 不得 トイヨト イヨト

3

where  $\beta_9 \approx 1.55392$ .

$$\beta_k \le \beta_2 = \frac{1+\sqrt{5}}{2}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

$$\beta_k \le \beta_2 = \frac{1 + \sqrt{5}}{2}.$$

Sketch of the proof. First we prove  $\beta_2 \geq \frac{1+\sqrt{5}}{2}$ . Suppose on the contrary  $\beta_2 < \frac{1+\sqrt{5}}{2}$ . Then  $U_{\frac{1+\sqrt{5}}{2}}$  contains a sequence of smallest period 2.

$$\beta_k \le \beta_2 = \frac{1 + \sqrt{5}}{2}.$$

Sketch of the proof. First we prove  $\beta_2 \geq \frac{1+\sqrt{5}}{2}$ . Suppose on the contrary  $\beta_2 < \frac{1+\sqrt{5}}{2}$ . Then  $\mathbf{U}_{\frac{1+\sqrt{5}}{2}}$  contains a sequence of smallest period 2. By symmetry we assume  $(d_i) = (\alpha_0 \alpha_1)^{\infty} \in \mathbf{U}_{\frac{1+\sqrt{5}}{2}}$ . Then

$$\mathbf{U}_{\frac{1+\sqrt{5}}{2}} \ni (\alpha_0 \alpha_1)^{\infty} \sim \begin{pmatrix} 0 & 1\\ 0 & 0\\ 1 & 0 \end{pmatrix}^{\infty}$$

$$\beta_k \le \beta_2 = \frac{1 + \sqrt{5}}{2}.$$

Sketch of the proof. First we prove  $\beta_2 \geq \frac{1+\sqrt{5}}{2}$ . Suppose on the contrary  $\beta_2 < \frac{1+\sqrt{5}}{2}$ . Then  $\mathbf{U}_{\frac{1+\sqrt{5}}{2}}$  contains a sequence of smallest period 2. By symmetry we assume  $(d_i) = (\alpha_0 \alpha_1)^{\infty} \in \mathbf{U}_{\frac{1+\sqrt{5}}{2}}$ . Then

$$\mathbf{U}_{\frac{1+\sqrt{5}}{2}} \ni (\alpha_0 \alpha_1)^{\infty} \sim \begin{pmatrix} 0 & 1\\ 0 & 0\\ 1 & 0 \end{pmatrix}^{\infty}$$

This contradicts to the property for  $(d_i^1)$  that

$$c_{n+1}c_{n+2}\ldots \prec \delta(\frac{1+\sqrt{5}}{2}) = (10)^{\infty}$$
 if  $c_n = 0$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So,  $\beta_2 \geq \frac{1+\sqrt{5}}{2}$ .

 $\alpha_0^{\infty}, (\alpha_0 \alpha_1)^{\infty} \in \mathbf{U}_{\beta}.$ 

![](_page_33_Picture_2.jpeg)

$$\alpha_0^\infty, (\alpha_0\alpha_1)^\infty \in \mathbf{U}_\beta.$$

▶ If  $k = 3\ell \in 3\mathbb{N}$ , then

$$\mathbf{U}_{\beta} \ni ((\alpha_0 \alpha_1 \alpha_2)^{\ell-1} \alpha_1 \alpha_0 \alpha_2)^{\infty} \sim \left( \left( \begin{array}{cccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right)^{\ell-1} \left( \begin{array}{cccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \right)^{\infty}$$

$$\alpha_0^\infty, (\alpha_0\alpha_1)^\infty \in \mathbf{U}_\beta.$$

▶ If  $k = 3\ell \in 3\mathbb{N}$ , then

$$\mathbf{U}_{\beta} \ni ((\alpha_{0}\alpha_{1}\alpha_{2})^{\ell-1}\alpha_{1}\alpha_{0}\alpha_{2})^{\infty} \sim \left( \left( \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right)^{\ell-1} \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \right)^{\infty}$$

• If 
$$k = 3\ell + 1 \in 3\mathbb{N} + 1$$
, then  

$$\mathbf{U}_{\beta} \ni ((\alpha_0 \alpha_1 \alpha_2)^{\ell} \alpha_1)^{\infty} \sim \left( \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}^{\ell} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right)^{\infty}$$

$$\alpha_0^{\infty}, (\alpha_0 \alpha_1)^{\infty} \in \mathbf{U}_{\beta}.$$

▶ If  $k = 3\ell \in 3\mathbb{N}$ , then

$$\mathbf{U}_{\beta} \ni ((\alpha_{0}\alpha_{1}\alpha_{2})^{\ell-1}\alpha_{1}\alpha_{0}\alpha_{2})^{\infty} \sim \left( \left( \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right)^{\ell-1} \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \right)^{\infty}$$

• If 
$$k = 3\ell + 1 \in 3\mathbb{N} + 1$$
, then  

$$\mathbf{U}_{\beta} \ni ((\alpha_0 \alpha_1 \alpha_2)^{\ell} \alpha_1)^{\infty} \sim \left( \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}^{\ell} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right)^{\infty}.$$

• If  $k = 3\ell + 2 \in 3\mathbb{N} + 2$ , then  $\mathbf{U}_{\beta} \ni ((\alpha_0 \alpha_1 \alpha_2)^{\ell} \alpha_0 \alpha_1)^{\infty} \sim \left( \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}^{\ell} \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{pmatrix} \right)^{\infty}.$ 

# Algorithm for a general $\beta_k$

For  $k \in \mathbb{N}_{\geq 2}$  let  $(d_i) = (d_1 \dots d_k)^{\infty} \in \{\alpha_0, \alpha_1, \alpha_2\}^{\mathbb{N}}$  be a sequence of smallest period k. Then  $(d_i^1)$ ,  $(d_i^2)$  and  $(\overline{d_i^{\oplus}})$  are three new periodic sequences in  $\{0, 1\}^{\mathbb{N}}$ . Define

$$(\hat{d}_i) := \max \bigcup_{n=0}^{k-1} \left\{ \sigma^n((d_i^1)), \sigma^n((d_i^2)), \sigma^n(\overline{(d_i^\oplus)}) \right\}.$$

Then by the characterization of  $\mathbf{U}_{\beta}$  it follows that

$$(d_i) = (d_1 \dots d_k)^{\infty} \in \mathbf{U}_{\beta} \quad \Longleftrightarrow \quad \delta(\beta) \succ (\hat{d}_i).$$

# Algorithm for a general $\beta_k$

For  $k \in \mathbb{N}_{\geq 2}$  let  $(d_i) = (d_1 \dots d_k)^{\infty} \in \{\alpha_0, \alpha_1, \alpha_2\}^{\mathbb{N}}$  be a sequence of smallest period k. Then  $(d_i^1)$ ,  $(d_i^2)$  and  $(\overline{d_i^{\oplus}})$  are three new periodic sequences in  $\{0, 1\}^{\mathbb{N}}$ . Define

$$(\hat{d}_i) := \max \bigcup_{n=0}^{k-1} \left\{ \sigma^n((d_i^1)), \sigma^n((d_i^2)), \sigma^n(\overline{(d_i^\oplus)}) \right\}.$$

Then by the characterization of  $\mathbf{U}_{\beta}$  it follows that

$$(d_i) = (d_1 \dots d_k)^{\infty} \in \mathbf{U}_{\beta} \iff \delta(\beta) \succ (\hat{d}_i).$$

Set

$$(a_i) := \min\left\{ (\hat{d}_i) : (d_i) = (d_1 \dots d_k)^\infty \text{ has smallest period } k \right\}.$$

It follows that

 $\mathbf{U}_{\beta}$  contains a sequence of smallest period  $k \iff \delta(\beta) \succ (a_i)$ . From this we can deduce that  $\delta(\beta_k) = (a_i) = (a_1 \dots a_k)^{\infty}$ . Upper bound: to prove δ(β<sub>k</sub>) ≼ (ε<sub>1</sub>...ε<sub>k</sub>)<sup>∞</sup> it suffices to show that for any δ(β) ≻ (ε<sub>1</sub>...ε<sub>k</sub>)<sup>∞</sup> the set U<sub>β</sub> contains a sequence (d<sub>1</sub>...d<sub>k</sub>)<sup>∞</sup> of smallest period k.

- Upper bound: to prove δ(β<sub>k</sub>) ≼ (ε<sub>1</sub>...ε<sub>k</sub>)<sup>∞</sup> it suffices to show that for any δ(β) ≻ (ε<sub>1</sub>...ε<sub>k</sub>)<sup>∞</sup> the set U<sub>β</sub> contains a sequence (d<sub>1</sub>...d<sub>k</sub>)<sup>∞</sup> of smallest period k.
- Lower bound: to prove  $\delta(\beta_k) \geq (\varepsilon_1 \dots \varepsilon_k)^{\infty}$ , we need to show that for  $\delta(\beta) = (\varepsilon_1 \dots \varepsilon_k)^{\infty}$  the set  $\mathbf{U}_{\beta}$  contains no sequence of smallest period k. This is more challenging!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ Upper bound: to prove  $\delta(\beta_k) \preccurlyeq (\varepsilon_1 \dots \varepsilon_k)^\infty$  it suffices to show that for any  $\delta(\beta) \succ (\varepsilon_1 \dots \varepsilon_k)^\infty$  the set  $\mathbf{U}_\beta$  contains a sequence  $(d_1 \dots d_k)^\infty$  of smallest period k.
- Lower bound: to prove  $\delta(\beta_k) \succcurlyeq (\varepsilon_1 \dots \varepsilon_k)^{\infty}$ , we need to show that for  $\delta(\beta) = (\varepsilon_1 \dots \varepsilon_k)^{\infty}$  the set  $\mathbf{U}_{\beta}$  contains no sequence of smallest period k. This is more challenging!

### Definition

A block  $a_1 \dots a_k \in \{0,1\}^*$  is called admissible if there exists an aperiodic block  $d_1 \dots d_k \in \{\alpha_0, \alpha_1, \alpha_2\}^k$  such that  $d_1^1 \dots d_k^1 = a_1 \dots a_k$  and

$$\begin{aligned} & d_{j+1}^1 \dots d_k^1 d_1^1 \dots d_j^1 \preccurlyeq a_1 \dots a_k \quad \forall 0 \le j < k, \\ & d_{j+1}^2 \dots d_k^2 d_1^2 \dots d_j^2 \preccurlyeq a_1 \dots a_k \quad \forall 0 \le j < k, \\ & \overline{d_{j+1}^{\oplus} \dots d_k^{\oplus} d_1^{\oplus} \dots d_j^{\oplus}} \preccurlyeq a_1 \dots a_k \quad \forall 0 \le j < k. \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Upper bound: to prove  $\delta(\beta_k) \preccurlyeq (\varepsilon_1 \dots \varepsilon_k)^{\infty}$  it suffices to show that for any  $\delta(\beta) \succ (\varepsilon_1 \dots \varepsilon_k)^{\infty}$  the set  $\mathbf{U}_{\beta}$  contains a sequence  $(d_1 \dots d_k)^{\infty}$  of smallest period k.
- Lower bound: to prove  $\delta(\beta_k) \succcurlyeq (\varepsilon_1 \dots \varepsilon_k)^{\infty}$ , we need to show that for  $\delta(\beta) = (\varepsilon_1 \dots \varepsilon_k)^{\infty}$  the set  $\mathbf{U}_{\beta}$  contains no sequence of smallest period k. This is more challenging!

### Definition

A block  $a_1 \dots a_k \in \{0,1\}^*$  is called admissible if there exists an aperiodic block  $d_1 \dots d_k \in \{\alpha_0, \alpha_1, \alpha_2\}^k$  such that  $d_1^1 \dots d_k^1 = a_1 \dots a_k$  and

$$\begin{aligned} & d_{j+1}^1 \dots d_k^1 d_1^1 \dots d_j^1 \preccurlyeq a_1 \dots a_k \quad \forall 0 \le j < k, \\ & d_{j+1}^2 \dots d_k^2 d_1^2 \dots d_j^2 \preccurlyeq a_1 \dots a_k \quad \forall 0 \le j < k, \\ & \overline{d_{j+1}^{\oplus}} \dots \overline{d_k^{\oplus}} \overline{d_1^{\oplus}} \dots \overline{d_j^{\oplus}} \preccurlyeq a_1 \dots a_k \quad \forall 0 \le j < k. \end{aligned}$$

Difficulty: the representation block  $d_1 \dots d_k$  is not necessarily unique. For example, take  $a_1 \dots a_5 = 10100$ . Then we have two representations

$$\left(\begin{array}{rrrr}1 & 0 & 1 & 0 & 0\\0 & 1 & 0 & 1 & 0\\0 & 0 & 0 & 0 & 1\end{array}\right), \quad \left(\begin{array}{rrrr}1 & 0 & 1 & 0 & 0\\0 & 1 & 0 & 0 & 1\\0 & 0 & 0 & 1 & 0\end{array}\right).$$

### Proposition (Key proposition)

If  $a_1 \ldots a_{3\ell}$  is an admissible block with  $\ell \geq 3$ , and has a prefix

 $a_1 \dots a_9 = 101001000,$ 

then  $a_1 \ldots a_{3\ell} \in \mathcal{B}^*(X)$ , and it has a unique representation block (up to rotation)  $d_1 \ldots d_{3\ell} \in \{\alpha_0, \alpha_1, \alpha_2\}^{3\ell}$  satisfying

 $d_1^1 \dots d_{3\ell}^1 = a_1 \dots a_{3\ell}, \quad d_1^2 \dots d_{3\ell}^2 = (010)^\ell, \quad \overline{d_1^{\oplus}} \dots \overline{d_{3\ell}^{\oplus}} = \Theta(a_1 \dots a_{3\ell}).$ 

![](_page_43_Figure_5.jpeg)

Figure: The directed graph representing the subshift of finite type X.

# Proof of the key proposition

Since  $a_1 \ldots a_{3\ell}$  is admissible, it has a representation  $d_1 \ldots d_{3\ell} \in \{\alpha_0, \alpha_1, \alpha_2\}^{3\ell}$ . Here we only prove

 $a_1 \dots a_9 \in \mathcal{B}^*(X)$  and  $d_1^2 \dots d_9^2 = (010)^3$ .

# Proof of the key proposition

Since  $a_1 \dots a_{3\ell}$  is admissible, it has a representation  $d_1 \dots d_{3\ell} \in \{\alpha_0, \alpha_1, \alpha_2\}^{3\ell}$ . Here we only prove

$$a_1 \dots a_9 \in \mathcal{B}^*(X)$$
 and  $d_1^2 \dots d_9^2 = (010)^3$ .

#### Note that

$$d_1^1 \dots d_9^1 = a_1 \dots a_9 = 101001000 \in \mathcal{B}^*(X),$$
  
$$d_i^1 + d_i^2 + \overline{d_i^{\oplus}} = 1 \quad \forall 1 \le i \le 9.$$

Suppose  $d_1^2 \dots d_9^2 \succcurlyeq \overline{d_1^{\oplus}} \dots \overline{d_9^{\oplus}}$ . By the definition of admissibility and using  $a_1 \dots a_9 = 101001000$  it follows that

11, 10101, 10100101 and 101001001

are all forbidden in  $d_1^1 \dots d_{3\ell}^1, d_1^2 \dots d_{3\ell}^2$  and  $\overline{d_1^{\oplus} \dots d_{3\ell}^{\oplus}}$ . From this we can deduce that (needs explanation)

$$\begin{pmatrix} d_1^1 \dots d_9^1 \\ \frac{d_1^2}{d_1^{\oplus}} \dots d_9^{\oplus} \end{pmatrix} = \begin{pmatrix} 101 & 001 & 000 \\ 010 & 010 & 010 \\ 000 & 100 & 101 \end{pmatrix}.$$

The proof can be proceeded by induction. For this we also need the following inequalities of generalized Thue-Morse sequence. Recall that

$$\delta(\beta_c) = \lambda_1 \lambda_2 \ldots = 101001000101 \ldots$$

Let  $(\gamma_i) = \Theta(\lambda_1 \lambda_2 \ldots) = 000100101000 \ldots$  Then for any  $n \ge 0$  we have

$$\begin{split} \gamma_1 \dots \gamma_{3 \cdot 2^n - i} \prec \lambda_{i+1} \dots \lambda_{3 \cdot 2^n} \preccurlyeq \lambda_1 \dots \lambda_{3 \cdot 2^n - i}, \\ \gamma_1 \dots \gamma_{3 \cdot 2^n - i} \preccurlyeq \gamma_{i+1} \dots \gamma_{3 \cdot 2^n} \prec \lambda_1 \dots \lambda_{3 \cdot 2^n - i} \end{split}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

for all  $0 \leq i < 3 \cdot 2^n$ .

# Final remarks and future work

The main result can be adapted to a general class of fat Sierpinski gasket in  $\mathbb{R}^2$  generated by

 $\{f_1(x) = \lambda x + \mathbf{p}_1, \quad f_2(x) = \lambda x + \mathbf{p}_2, \quad f_3(x) = \lambda x + \mathbf{p}_3\},\$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where  $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$  are non-colinear vectors in  $\mathbb{R}^2$ .

# Final remarks and future work

The main result can be adapted to a general class of fat Sierpinski gasket in  $\mathbb{R}^2$  generated by

 $\{f_1(x) = \lambda x + \mathbf{p}_1, \quad f_2(x) = \lambda x + \mathbf{p}_2, \quad f_3(x) = \lambda x + \mathbf{p}_3\},\$ 

where  $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$  are non-colinear vectors in  $\mathbb{R}^2$ .

- Extend to more general planar self-similar sets with overlaps, and consider the associated periodic points.
- Extend to higher dimensional fat Sierpinski gasket or self-similar sets with overlaps.
- Study one parameter family of open dynamical systems, and determine the critical parameter in which the open dynamical system contains a point of smallest period k.

# THANK YOU!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●