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Restricted continued fraction digits

For ACN:={1,2,...} let
Fa:={[a1,a2,...] | Vn € N;a, € A}

with the continued fraction expansion

1
di,dz,...| =
[ ] ai +

1
at A

Kessebohmer & Zhou (2006) showed the Texan Conjecture:

{dimy(Fa) | A C N} =0, 1],

Vx €[0,1] 3IACN s.t. dimy(Fp) = x.
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e Hausdorff- and Minkowski (=box) dimension are significant
geometric characteristics of fractal sets. Limitation:

e Mandelbrot 1995: a Cantor dust on [0, 1] may achieve any
given Hausdorff dimension in (0,1) in many different ways.
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G — —_— —_— —_—
C_11 |
C_o Ht+++++1 A
. log4 logl6 .
d Ci)=——= =d C
imu pm(Cir) og7  Tog49 imu pm(Cai2)

e Cantor set Cy will look more and more like [0, 1] for k — oo
e Cantor set C_ will look more and more like {0, 1} for k — oo

o C, and C_j differ significantly in their gap structure
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Minkowski content

@ proposed as measure of lacunarity for fractals, Mandelbrot '82:
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Minkowski content — restricted continued fraction digit sets

For A C N with #A > 2

Fpn:={la1,a2,...] | Vn € N;a, € A}
D := dimH(F/\)< 1 =A 7& N
1 equilibrium measure

h,, its measure theoretical entropy.

For simplicity assume that for k € N\ A we have
k+1 e AU{0} (guarantees: clFS is strongly regular):

M(Fp) exists, is positive and finite and

21D

M(FA):ﬁnji"m Z Z [P [a]

aeN\A |w|=




Restricted Liroth digits

For A C N with #A > 2 consider the IFS on the unit interval:

V= {,: x— —apx+t, | n€ A} with

41 =1
an = ((s) 1;, tn = ((s) 12%’ neN
k=n

for fixed s > 1 with the Riemann zeta-function (.
WV is an (infinitely generated) IFS of linear maps
Lp: Invariant set of W
= set of all Liiroth expansions omitting the digits from N\ A
dimp pm(La) is the unique real 6 > 0 for which

> o = (s)

ke



Minkowski content — restricted Liroth digits

Theorem (non-lattice)

If {log a, | n € A} does not generate a discrete subgroup of R
(system is non-lattice) then M(Lp) exists, is positive and finite and

_ 2170(¢(s0)/¢(s)° — 1)
M(Lp) = (1—0)h,

Example (lattice)
Fix £ € N>2, s > 1 with

slog?
log ¢(s)
If A C {¢¥| k € N}, then for some g € N

flogan | n€ A} C {kslog — log(¢(s)) | k € N} C log(¢(s))/a)Z

€ Q.

The Minkowski content of L does not exist.
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Proof idea — Renewal theory

@ Fp invariant under the (infinitely generated) conformal IFS on
the unit interval:

:{gbk:xr—>x+1k|k6/\},

i e. F/\ = Uke/\ (Z)k(F/\)
@ Recurrence / Renewal relation:

N(e) = [(Fa)l = (| ¢xFa).l = [ (xFn)-

ke KeA
= MéxFn)el = | | (6xFa)e N (deFa)e|
ken k£LEN
~ Z|¢k FA)eio,)| — ZW)H (FA)e/10,11 — R(€)
ken keh

=D Ikl - N(=/194]) = R(e)

ke
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