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Restricted continued fraction digits

For Λ ⊂ N := {1, 2, . . .} let

FΛ := {[a1, a2, . . .] | ∀n ∈ N; an ∈ Λ}

with the continued fraction expansion

[a1, a2, . . .] :=
1

a1 +
1

a2+
1

a3+···

Kesseböhmer & Zhou (2006) showed the Texan Conjecture:

{dimH(FΛ) | Λ ⊂ N} = [0, 1],

i. e.
∀x ∈ [0, 1] ∃Λ ⊂ N s. t. dimH(FΛ) = x .



Finer geometric characteristics for invariant sets of cIFS

Hausdorff- and Minkowski (=box) dimension are significant
geometric characteristics of fractal sets. Limitation:

Mandelbrot 1995: a Cantor dust on [0, 1] may achieve any
given Hausdorff dimension in (0, 1) in many different ways.

C1

C−1

C2

C−2

dimH,M(C±1) =
log 4

log 7

=
log 16

log 49
= dimH,M(C±2)

Cantor set Ck will look more and more like [0, 1] for k → ∞
Cantor set C−k will look more and more like {0, 1} for k → ∞
Ck and C−k differ significantly in their gap structure
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Finer geometric characteristics for invariant sets of cIFS– II

Minkowski content

proposed as measure of lacunarity for fractals, Mandelbrot ’82:
”a fractal is to be called lacunar if its gaps tend to be large, in
the sense that they include large intervals (discs, or balls).”

C1

C−1

C2

C−2

Definition (Minkowski content of F ⊂ R for which dimM(F ) exists)

M(F ) := lim
ε→0

εdimM(F )−1|Fε| if lim exists

M(F ) := lim sup
ε→0

εdimM(F )−1|Fε| upper Minkowski content

k grows: lacunarity of Ck decreases; M(Ck) increases
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Minkowski content – restricted continued fraction digit sets

For Λ ⊂ N with #Λ ≥ 2

FΛ := {[a1, a2, . . .] | ∀n ∈ N; an ∈ Λ}

D := dimH(FΛ)< 1 ⇒ Λ ̸= N
µ equilibrium measure

hµ its measure theoretical entropy.

For simplicity assume that for k ∈ N \ Λ we have
k ± 1 ∈ Λ ∪ {0} (guarantees: cIFS is strongly regular):

Theorem

M(FΛ) exists, is positive and finite and

M(FΛ) =
21−D

(1− D)hµ
lim

m→∞

∑
a∈N\Λ

∑
|ω|=m

|Φω ([a])|D .



Restricted Lüroth digits

For Λ ⊂ N with #Λ ≥ 2 consider the IFS on the unit interval:

Ψ := {ψn : x 7→ −anx + tn | n ∈ Λ} with

an := ζ(s)−1 1

ns
, tn := ζ(s)−1

∞∑
k=n

1

ks
, n ∈ N

for fixed s > 1 with the Riemann zeta-function ζ.

Ψ is an (infinitely generated) IFS of linear maps

LΛ: Invariant set of Ψ
= set of all Lüroth expansions omitting the digits from N \ Λ

dimH,M(LΛ) is the unique real δ > 0 for which∑
k∈Λ

1

kδs
= ζ(s)δ.



Minkowski content – restricted Lüroth digits

Theorem (non-lattice)

If {log an | n ∈ Λ} does not generate a discrete subgroup of R
(system is non-lattice) then M(LΛ) exists, is positive and finite and

M(LΛ) =
21−δ(ζ(sδ)/ζ(s)δ − 1)

(1− δ)hµ

Example (lattice)

Fix ℓ ∈ N≥2, s > 1 with
s log ℓ

log ζ(s)
∈ Q.

If Λ ⊂ {ℓk | k ∈ N}, then for some q ∈ N

{log an | n ∈ Λ} ⊂ {ks log ℓ− log(ζ(s)) | k ∈ N} ⊂ log(ζ(s))/q)Z

The Minkowski content of LΛ does not exist.



Proof idea – Renewal theory

FΛ invariant under the (infinitely generated) conformal IFS on
the unit interval:

Φ :=
{
ϕk : x 7→ 1

x + k
| k ∈ Λ

}
,

i. e. FΛ =
⋃

k∈Λ ϕk(FΛ).

Recurrence / Renewal relation:

N(ε) := |(FΛ)ε|

= |
( ⋃
k∈Λ

ϕkFΛ
)
ε
| = |

⋃
k∈Λ

(ϕkFΛ)ε|

=
∑
k∈Λ

|(ϕkFΛ)ε| − |
⋃

k ̸=ℓ∈Λ
(ϕkFΛ)ε ∩ (ϕℓFΛ)ε|

≈
∑
k∈Λ

|ϕk((FΛ)ε/|ϕ′
k |)| − R(ε) ≈

∑
k∈Λ

|ϕ′k | · |(FΛ)ε/|ϕ′
k || − R(ε)

=
∑
k∈Λ

|ϕ′k | · N(ε/|ϕ′k |)− R(ε)
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