Another proof of finiteness of monochromatic arithmetic progressions in the Fibonacci word

Gandhar Joshi
Supervisor: Dr. Dan Rust

School of Mathematics and Statistics
The Open University

Numeration 2024, Utrecht
Van der Waerden’s theorem

A *monochromatic arithmetic progression* (MAP) is a set of positions of the same symbol with a constant distance d.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$\text{length}(\text{MAP}) = 3$.

Theorem (Baudet’s conjecture, 1927)

For any A, and some k, $N \in \mathbb{N}$, a MAP of length k must exist in a string of length N.

MAPs in F are finite.
A monochromatic arithmetic progression (MAP) is a set of positions of the same symbol with a constant distance d. Take $d = 2$ and start at position 3 \Rightarrow length(MAP) = 3.

Theorem (Baudet’s conjecture, 1927)

For any A, and some $k, N \in \mathbb{N}$, a MAP of length k must exist in a string of length N.
Finiteness of MAPs

Question

Does the Fibonacci word f have an infinite MAP for some d'?

Answer: No.
Finiteness of MAPs

Question

Does the Fibonacci word f have an infinite MAP for some d'?

Answer: No.

Proofs so far:

- **Durand-Goyheneche, 2018**: \exists irrational dynamical eigenvalue of the subshift generated by x, iff x admits an infinite MAP.

- **Aedo-Grimm, 2021 (unpublished)**: Based on the theory of model sets.
Finiteness of MAPs

Question
Does the Fibonacci word f have an infinite MAP for some d'?

Answer: No.

Proofs so far:

- **Durand-Goyheneche, 2018**: \exists irrational dynamical eigenvalue of the subshift generated by x, iff x admits an infinite MAP.

- **Aedo-Grimm, 2021 (unpublished)**: Based on the theory of model sets.

We prove it using the definition of f as a rotation sequence.
Plot for \(n \geq 1, \langle n\tau \rangle := n\tau \mod 1 \).

\[
f : 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ \cdots
\]

Figure: Generating the Fibonacci word.
Rotation sequence

Plot for $n \geq 1$, $\langle n\tau \rangle := n\tau \mod 1$.

$$f : 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 \cdots$$

Figure: Generating the Fibonacci word.
Rotation sequence

Plot for $n \geq 1$, $\langle n\tau \rangle := n\tau \mod 1$.

$$f : \begin{array}{cccccccccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & \cdots
\end{array}$$

Figure: Generating the Fibonacci word.
Plot for $n \geq 1$, $\langle n\tau \rangle := n\tau \mod 1$.

$f : 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ \ldots$

Figure: Generating the Fibonacci word.
Plot for $n \geq 1$, $\langle n\tau \rangle := n\tau \mod 1$.

$$f : 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad \cdots$$

\[0 \quad \langle 2\tau \rangle \quad \tau^{-2} \quad \langle 4\tau \rangle \quad \langle \tau \rangle \quad \langle 3\tau \rangle \quad 1\]

Figure: Generating the Fibonacci word.
Rotation sequence

Plot for $n \geq 1$, $\langle n\tau \rangle := n\tau \mod 1$.

\[
f : 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ \ldots
\]

Figure: Generating the Fibonacci word.
Plot for $n \geq 1$, $\langle n\tau \rangle := n\tau \mod 1$.

$f : 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ \cdots$

Figure: Generating the Fibonacci word.
Rotation sequence

Plot for \(n \geq 1, \langle n \tau \rangle := n \tau \mod 1. \)

\[f : 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ \cdots \]

Figure: Generating the Fibonacci word.

Proposition

The Fibonacci word contains no infinite MAPs.
Rotation sequence

Plot for $n \geq 1$, $\langle n\tau \rangle := n\tau \mod 1$.

$$f : 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ \cdots$$

Figure: Generating the Fibonacci word.

Proposition

The Fibonacci word contains no infinite MAPs.

Proof.

the orbit of $\langle n\tau \rangle$ for all n on $[0, 1]$ interval is dense. This extends to any one-sided Sturmian sequence for the same reason.