
On 𝛽-ary to Binary Conversion from an 
Engineering Point of View

Yutaka Jitsumatsu (Kyushu University, Japan)



Introduction (1/3)

❑ The purpose of this talk is to introduce our research on the 𝛽 encoder, 

an analog-to-digital converter based on beta transformation. 

❑ My research motivation is an application of dynamical systems to 

engineering.

❑ I am glad if you are interested in our research.



Introduction (2/3)

❑A 𝛽 encoder [DDGV02] is an ADC based on beta transformation.

𝑎𝑖 = 𝑄𝜈 𝛽𝑥𝑖−1 , 
𝑥𝑖 = 𝛽𝑥𝑖−1 − 𝑎𝑖 , 𝑥0 = 𝑥,

𝑄𝜈 𝑥 =  ቊ
0, 𝑥 < 𝜈
1, 𝑥 ≥ 𝜈

Input

 𝑥 𝑡 Sample 

& Hold
× 𝛽

Comparator 

𝑎𝑖 ∈ 0,1

𝑇𝑠/𝑁

𝑡 = 𝑛𝑇𝑠

𝑡 = 𝑛𝑇𝑠

+

A circuit of beta encoder 

𝜈

+

−

−

[DDGV02] I. Daubechies; R. DeVore; C.S. Gunturk; V.A. 

Vaishampayan, “Beta expansions: a new approach to 

digitally corrected A/D conversion,” 2002 IEEE Int. 

Symp. Circuits and Systems.



Integrated Circuit 



Research Collaborators

❑ Professor San HAO

(Tokyo City University)

Expert of analog-to-digital 

converters

❑ Professor Katsutoshi 

SHINOHARA 

(Hitotsubashi Univ.)

Expert of dynamical 

systems

❑ I am an engineer in 

communication theory 

and information theory. 

Engineering 

(Applications)

AD Converters Random Number 

Generators

Beta encoder (Hardware)

Mathematics

Beta transformation 

Dynamical systems

Ergodic Theory



❑ Can we use  the output of beta encoder 𝑎𝑖’s as a random number?

• They have bias and correlations.

❑ Can we construct a randomness extractor for beta encoders?

Note: 𝑎𝑖’s are physically generated.

❑ It is important to find an appropriate mathematical model that can 

properly describe the behavior of the 𝛽 encoder.

Introduction (3/3)  The purpose of my research

input 𝑎1𝑎2 … 𝑎𝑘 ➔                          ➔ output 𝑏1𝑏2 … 𝑏𝑛
randomness 

extractor
i.i.d. binarynon i.i.d. 



ADCs

❑ An analog-to-digital converter (ADC) is a device that converts an 

input analog signal, 𝑥 𝑡 : ℝ → ℝ, into a binary sequence that gives its 

finite precision approximation.

Performance comparison of ADCs

𝑥 𝑡

Sampling

Q
u

a
n

ti
za

ti
o

n

𝑡



Binary Expansion

❑ Consider a binary expansion of a sample 𝑥 ∈ 0,1 ⊂ ℝ

𝑥 = 

𝑖=1

+∞

 𝑏𝑖2−𝑖 ,  𝑏𝑖 ∈ 0,1 , 

❑ 𝑏𝑖 is determined recursively as

𝑏𝑖 = 𝑄1 2𝑥𝑖−1 , 

𝑥𝑖 = 2𝑥𝑖−1 − 𝑏𝑖 , 𝑥0 = 𝑥,

𝑄1 𝑥 =  ቊ
0, 𝑥 < 1,
1, 𝑥 ≥ 1.

❑ The precision of an ADC is finite. 𝑁-bit representation of 𝑥 is ො𝑥 𝑁 = σ𝑖=1
𝑁  𝑏𝑖2−𝑖

❑ The output binary sequence of the ADC beyond the precision is considered 

random.

𝑥𝑖

𝑥𝑖+1

1

0 1
0



Comparator’s precision

0

1

Input/Output of Ideal comparator

𝑥

A hard threshold
0

1

Flaky comparator model

𝑥

0 or 1

❑The threshold can only be controlled with some finite precision.

❑The threshold is affected by thermal noise.

threshold

𝜈

+

−

𝑥
output

Circuit diagram 

𝑄f 𝑥 =  ቐ
0, 𝑥 ≤ 𝜈𝐿 ,
0 or 1,  𝜈𝐿 < 𝑥 < 𝜈𝐻

1, 𝑥 ≥ 𝜈𝐻 .
, 1 < 𝜈𝐿 < 𝜈𝐻 <

1

𝛽 − 1

𝑄f is a model of the quantizer such that its output around the 

threshold is unreliable. 

𝜈𝐿 = 𝜈 − 𝛿,
𝜈𝐻 = 𝜈 + 𝛿,
𝛿 > 0



The effect of mismatch of the threshold

❑ We can only expect that the comparator threshold is guaranteed to be 

within some interval, e.g., [𝜈𝐿 , 𝜈𝐻].

❑ The recursive formula for the binary expansion does not work if the 

quantizer is imperfect.

𝑥𝑖

𝑥𝑖+1

1

0 1
0

The dynamics of binary expansion 

with imperfect quantizer



The 𝛽-encoder

❑ 𝛽-encoder is an ADC that produces a 𝛽 expansion of 𝑥 

with 1 < 𝛽 < 2

𝑥 = 

𝑖=1

+∞

𝑎𝑖𝛽𝑖 , 𝑏𝑖 ∈ 0,1

❑ 𝑎𝑖 is determined recursively as

𝑎𝑖 = 𝑄f 𝛽𝑥𝑖−1 , 

𝑥𝑖 = 𝛽𝑥𝑖−1 − 𝑎, 𝑥0 = 𝑥,

𝑄f 𝑥 =  ቐ

0, 𝑥 ≤ 𝜈𝐿 ,
0 or 1,  𝜈𝐿 < 𝑥 < 𝜈𝐻

1, 𝑥 ≥ 𝜈𝐻 .
, 

❑ Advantage:  𝑥𝑖 does not diverge, if 1 < 𝜈𝐿 < 𝜈𝐻 <
1

𝛽−1
 

is satisfied. Imperfect quantizer can be used. 

𝑥𝑖

𝑥𝑖+1

1

0 1
0

1

𝛽 − 1

𝑦 = 𝛽𝑥 𝑦 = 𝛽𝑥 − 1

0 1?



Use of a beta encoder as a random number generator.

Input 𝑎1𝑎2 … 𝑎𝑘 ➔                          ➔ Output 𝑏1𝑏2 … 𝑏𝑛
randomness 

extractor
i.i.d. binaryNon i.i.d. 

• Beta encoder output is biased and correlated.

𝑛 < 𝑘



Some basic ideas about randomness extractors

❑ Von Neumann debiaser algorithm [vN51].

• HH and TT are discarded

• HT and TH are converted to 0 and 1.

❑ Hash function can be a randomness extractor

• Cryptographic hash function

❑We borrow an idea from [HH’97]’s interval algorithm.

[vN51] J. von Neumann “Various techniques used in connection with random digits,” Applied Math 

Series, 12:36–38, 1951.

[HH’97]: T. S. Han and M. Hoshi, “Interval algorithm for random number generation,” IEEE Trans. 

Inform. Theory, vol. 43, no. 2, pp. 599–611, March 1997



Han and Hoshi’s interval algorithm

❑ The distributions for “coin” and “target” rvs. 𝑝𝑚 and 𝑞𝑛 are given.

❑ The unit interval is partitioned into 𝐽𝑛s according to 𝑞𝑛 (See the Fig.)

❑ Toss a coin many times to simulate one “target” rv. 

1. Set 𝑡 = 0 and 𝐾0  =  [0,1);

2. if 𝐾𝑡 ⊂  𝐽𝑛 for some 𝑛, then set the target 𝑋 = 𝑛 and quit.

3. else flip the coin, 𝑘 ≔ 𝑘 + 1 and update 𝐾𝑡.

𝐽1 𝐽3 𝐽4

𝐾0

𝑞1 𝑞2 𝑞3

𝐾1

𝐾2

𝐽2 𝐽5 𝐽6

𝐾3

Example

• A dice simulated by flips 

of a fair coin.

• This figure shows the 

case where the outcome 

is 011. 

• The output is 𝑋 = 3.

𝑞4 𝑞5 𝑞6



Theorem (HH’97): The interval algorithm satisfies 
𝐻 𝑞

𝐻 𝑝
≤ 𝐿∗ ≤

𝐻 𝑞 + 𝑓 𝑝

𝐻 𝑝
, 𝑓 𝑝 = ln 2 𝑀 − 1 +

ℎ 𝑝max

1 − 𝑝max
,

where 𝐿∗ is the expected number of tosses, 𝐻 𝑝 = σ𝑖 𝑝𝑖 log
1

𝑝𝑖



A randomness extractor for
𝛽 encoder

❑ Let 𝑎𝑖 be the sequence of scale-

adjusted beta expansion of a 𝑥.

𝑥 = 𝛽 − 1 

𝑖=1

∞

𝑎𝑖𝛽−𝑖

❑ Compute the binary expansion 𝑏𝑗 of 𝑥 

sequentially from the series 𝑎𝑖 . 

❑ Can we regard 𝒃𝒋 as a sequence of 

i.i.d. random numbers?

❑ 𝑥 is set to some value, e.g. 0.5 ±

𝜖, where 𝜖 is an additive noise.

0 1

0

0

1 10

1 0 1 0 1 0 1

𝑏1

𝑏3

𝑏2

Binary expansion

0 1

𝛽-ary expansion

0

1

𝑎1

𝛽−1

0

1
0

1
0

1
0

1

𝑎3

𝛽−3

0

1

0

1

𝑎2

𝛽−2

[JM16] Y. Jitsumatsu, K. Matsumura, ”A β-ary to binary conversion 
for random number generation using a β encoder,” Nonlinear 
Theory and Its Applications, IEICE, 2016, vol.7, no.1, p. 38-55,



The 𝛽-ary to binary conversion [1]

Proposed method: (1st version)

1. Initialize 𝑖 = 𝑗 = 1, ℓ = 0, 𝑢 =  1, and 𝛾 =

𝛽−1

2. Read 𝑎𝑖 .

If 𝑎𝑖 = 0, then 𝑢 ≔ ℓ + 𝛾 𝑢 − ℓ .

If 𝑎𝑖 = 1, then ℓ ≔ 𝑢 − 𝛾 𝑢 − ℓ .

3. (a) If 𝑢 <
1

2
, then output 𝑏𝑗 = 0 and update 

𝑗 =  𝑗 +  1, ℓ =  2ℓ and 𝑢 =  2𝑢 

(b) If ℓ ≥
1

2
, then output 𝑏𝑗 = 1 and update 

𝑗 = 𝑗 + 1, ℓ = 2ℓ − 1, and 𝑢 = 2𝑢 − 1.

4. If 𝑗 = 𝑛, then quit. Otherwise, update

𝑖 = 𝑖 + 1 and go back to Step 2.

ℓ 𝑢

0 1

𝑎𝑖 = 0
𝑎𝑖 = 1

0
1

Step2.

Step3.

𝑎1, 𝑎2, … , 𝑎𝑖

𝑏1, 𝑏2, … , 𝑏𝑗



Fundamental question on the proposed method

❑ How many 𝑎𝑖s are needed to obtain 𝑛 bits of 𝑏𝑗?

We see that 𝛽−𝑘 < 2−𝑛 holds.→ 𝑘 >
𝑛

log2 𝛽

→
𝑘

𝑛
≈

1

log2 𝛽



Drawback of Version 1

❑ The interval [ℓ, 𝑢] may become very small.

❑ This happens if ℓ is smaller than ½ but close to ½ and 𝑢 is greater 

than ½ but close to ½.

❑ Version 1 is a prototype where 𝑢 and ℓ are calculated using real 

values but should eventually be implemented digitally. 

If [ℓ, 𝑢] becomes very small, it will lead to a degradation of the 

calculation accuracy.

❑ This drawback is overcome in Version 2.

ℓ 𝑢

0 1



The 𝛽-ary to binary conversion [1]

Proposed method (2nd version)

1. Initialize 𝑖 = 𝑗 = 1, ℓ = 0, 𝑘 = 0, 𝑢 =  1, and 𝛾 =

𝛽−1

2. (The same as ver. 1) Read 𝑎𝑖 .

3. (a) if 
1

4
≤ ℓ <

1

2
 and 

1

2
≤ 𝑢 <

3

4
, then update ℓ =

 2 ℓ −
1

2
, 𝑢 = 2𝑢 −

1

2
, and 𝑘 = 𝑘 + 1.

(b) If 𝑢 <
1

2
, then output 01 … 1 and update ℓ =

 2ℓ, 𝑢 =  2𝑢, 𝑗 =  𝑗 + 𝑘 + 1, and 𝑘 = 0.

(c) If ℓ ≥
1

2
, then output 10 … 0 and update ℓ =

2ℓ − 1, 𝑢 = 2𝑢 − 1, 𝑗 = 𝑗 + 𝑘 + 1, and 𝑘 = 0.

4. If 𝑗 ≥ 𝑛, then quit. Otherwise, update 𝑖 = 𝑖 + 1 

and go back to Step 2.

ℓ 𝑢

0 1

𝑎𝑖 = 0
𝑎𝑖 = 1

0 1

Step2.

Step3.

𝑘 expresses the number of undecided output bits. 

¼ ½  ¾  



0 1

00 01 10 11

Expand (𝑘 = 1)

01 10

010 011 100 101

Expand (𝑘 = 2)

011 100

The binary expansion slightly smaller than ½ is 0.0111… 

and the one lightly greater than ½ is 0.1000…

𝑏1

𝑏1𝑏2

𝑏1𝑏2𝑏3



The 𝛽-ary to binary conversion [1]
The proposed method (the 3rd version)

❑ All calculations must be performed digitally.

❑ In the 3rd version, 𝑢, ℓ and 𝛾 = 𝛽−1 are expressed by fixed-point 

numbers (or integers).

❑ The error caused by the finite precision calculation has not been 

evaluated. →Future work



A remaining problem

❑Mismatch of the value of 𝛽.

• We have assumed that the exact 𝛽 is available.

• The exact value of 𝛽 is unknown.

• It is desirable to obtain a binary sequence of i.i.d. from the output 

sequence of the 𝛽 encoder even if the exact 𝛽 is not known.



Extensions and future works

❑ Extension to the case of 𝛽 ≥ 2.

3 ≤ 𝛽 < 4𝛽 = 2

• The ADC with three branches is called 1.5 bit encoder and is 

commercially often used.

• Other beta value is also possible. (We get more bits at one cycle)


	スライド 1: On ベータ-ary to Binary Conversion from an Engineering Point of View
	スライド 2: Introduction (1/3)
	スライド 3: Introduction (2/3)
	スライド 4: Integrated Circuit 
	スライド 5: Research Collaborators
	スライド 6: Introduction (3/3)  The purpose of my research
	スライド 7: ADCs
	スライド 8: Binary Expansion
	スライド 9: Comparator’s precision
	スライド 10: The effect of mismatch of the threshold
	スライド 11: The ベータ-encoder
	スライド 12: Use of a beta encoder as a random number generator.
	スライド 13: Some basic ideas about randomness extractors
	スライド 14: Han and Hoshi’s interval algorithm
	スライド 15
	スライド 16: A randomness extractor for ベータ encoder
	スライド 17: The ベータ-ary to binary conversion [1]
	スライド 18: Fundamental question on the proposed method
	スライド 19: Drawback of Version 1
	スライド 20: The ベータ-ary to binary conversion [1]
	スライド 21
	スライド 22: The ベータ-ary to binary conversion [1] The proposed method (the 3rd version)
	スライド 23: A remaining problem
	スライド 24: Extensions and future works

