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Prelude 1: Find Min & Max via Divide & Conquer

Partition into two sets of (almost) equal size;
Find min and max in both parts individually & recursively;
Compare minima, compare maxima.

Number M(n) of comparisons when finding min and max of n
elements:

M(n) = M(dn/2e) + M(bn/2c) + 2.

In other words:

M(2n) = 2M(n) + 2,
M(2n + 1) = M(n) + M(n + 1) + 2.
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Prelude 2: Binary Sum of Digits

Binary expansion n =
∑

j≥0 εj2
j

Sum of digits s(n) =
∑

j≥0 εj

s(n) = s(bn/2c) + [n is odd].

In other words:

s(2n) = s(n),

s(2n + 1) = s(n) + 1.
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Matrix–Vector Form: Sum of Digits

Recall:

s(2n) = s(n),

s(2n + 1) = s(n) + 1.

Consider

v(n) :=

(
s(n)
1

)
.

Then

v(2n) =

(
s(2n)
1

)
=

(
s(n)
1

)
=

(
1 0
0 1

)
v(n),

v(2n + 1) =

(
s(2n + 1)

1

)
=

(
s(n) + 1

1

)
=

(
1 1
0 1

)
v(n)

.
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Matrix–Vector Form: Find Min and Max

Recall:

M(2n) = 2M(n) + 2,
M(2n + 1) = M(n) + M(n + 1) + 2.

Consider
v(n) :=

(
M(n) M(n + 1) 1

)>
.

Then

v(2n) =

 M(2n)
M(2n + 1)

1

 =

2 0 2
1 1 2
0 0 1

 v(n),

v(2n + 1) =

M(2n + 1)
M(2n + 2)

1

 =

1 1 2
0 2 2
0 0 1

 v(n)

.
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q-Regular Sequences

Vector-valued sequence v : N0 → CD with

v(qn + r) = Arv(n)

for all 0 ≤ r < q and n ≥ 0.

Constants:
q ≥ 2, D ≥ 1: integers;
A0, . . . , Aq−1: D × D-matrices.

First component of v : q-regular sequence (Allouche–Shallit 1992).
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Analysis of Regular Sequences

Theorem (Dumas 2013; H–Krenn 2020)
x(n): q-regular sequence, first component of v(n)

C := A0 + · · ·+ Aq−1

σ(C ): spectrum of C

R := limk→∞ sup{‖Ar1 . . .Ark‖1/k | 0 ≤ r1, . . . , rk < q}: Joint
spectral radius of A0, . . . , Aq−1

mC (λ): size of the largest Jordan block of C associated with λ

∑
0≤n<N

x(n) =
∑

λ∈σ(C)
|λ|>R

N logq λ
∑

0≤k<mC (λ)

(logN)k

k!
Φλk({logq N})

+ O
(
N logq R(logN)max{mC (λ) : |λ|=R})

as N →∞, where Φλk are suitable 1-periodic functions.
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Analysis of Regular Sequences: Fluctuations

For |λ| > R and 0 ≤ k < mC (λ):

Φλk is Hölder continuous
Pointwise convergence of the Fourier series

Φλk(u) =
∑
µ∈Z

ϕλkµ exp(2µπiu)

Fourier coefficients can be computed numerically (using a
functional equation for the corresponding Dirichlet series)
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Original Sequence, Summatory Function, Renormalisation
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Observations and Questions

Observations
Some regular sequences are “smooth enough” such that an
asymptotic formula makes sense.
Other regular sequences are not “smooth enough”; taking the
summatory function might help.

Questions
1 Does taking the summatory function a finite number of times

always lead to a smooth asymptotic behaviour?
2 Can we say something about classes where the original

sequence is smooth enough?
Spoilers

1 Yes (almost always)
2 For divide & conquer sequences
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Iterated Summatory Function

Σv(N) :=
∑

0≤n<N

v(n)

Theorem (H.–Krenn–Lechner 2024)
Let x be a q-regular sequence with matrices (Ar )0≤r<q. Set
C :=

∑
0≤r<q Ar . Assume that C has an eigenvalue 6= 0.

Then there is a non-negative integer k such that Σkx admits a
“good asymptotic expansion”.

Σv(qN + r) = empty

= empty

Repeating: asymptotic domination by DkC (if C has an eigenvalue
6= 0).
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“good asymptotic expansion”.

Σv(qN + r) =

( ∑
0≤r ′<q

Ar ′

) ∑
0≤n<N

v(n) +

( ∑
0≤r ′<r

Ar ′

)
v(N)

= CΣv(N) +

( ∑
0≤r ′<r

Ar ′

)
v(N)

Repeating: asymptotic domination by DkC (if C has an eigenvalue
6= 0).
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Divide-and-Conquer Sequences

Divide-and-conquer sequence:

x(n) = αx
(⌊n

2

⌋)
+ βx

(⌈n
2

⌉)
+ g(n)

for n ≥ 2 (α, β given positive constants, g given function (“toll
function“), x(1) given).

Theorem (Hwang–Janson–Tsai 2023)

Assume that there is an ε > 0 such that g(n) = O(nlog2(α+β)−ε).
Then

x(n) = nlog2(α+β)Φ({log2 n}) + O(nlog2(α+β)−ε)

for n→∞ where Φ is a continuous, 1-periodic function.

Question: Relation to “our“ result?
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Divide-and-Conquer and Regular Sequences

x(n) = αx
(⌊n

2

⌋)
+ βx

(⌈n
2

⌉)
+ g(n)

⇐⇒

x(2n) = (α + β)x(n) + g(2n)

x(2n + 1) = αx(n) + βx(n + 1) + g(2n + 1)

⇐⇒ (with v(n) = (x(n), x(n + 1))>)

v(2n) =

(
α + β 0
α β

)
v(n) +

(
g(2n)

g(2n + 1)

)
v(2n + 1) =

(
α β
0 α + β

)
v(n) +

(
g(2n + 1)
g(2n + 2)

)
If g is regular, then x is regular.
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Summatory Function of the Forward Difference

x(N) = x(0) +
∑

0≤n<N

(x(n + 1)− x(n))

Forward difference of regular sequence is regular
Summatory function of regular sequence is regular

. . . but can we say something in general?
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Forward Difference of Divide-and-Conquer Sequence

Set ∆x(n) := x(n + 1)− x(n).

Consider divide-and-conquer sequence

x(2n) = (α + β)x(n) + g(2n)

x(2n + 1) = αx(n) + βx(n + 1) + g(2n + 1)

⇒

∆x(2n) = β∆x(n) + g(2n + 1)− g(2n)

∆x(2n + 1) = α∆x(n) + g(2n + 2)− g(2n + 1).

Dimension 1 (plus dimension of linear representation of g):
particulary simple.
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Divide-and-Conquer: Result
Theorem (H.–Krenn–Lechner 2024)
Let x be a divide-and-conquer sequence with polynomial toll
function of degree k ≥ 1. Then (for 1-periodic continuous
functions Φ and Ψ and n→∞):
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Theorem (H.–Krenn–Lechner 2024)
Let x be a divide-and-conquer sequence with polynomial toll
function of degree k ≥ 1. Then (for 1-periodic continuous
functions Φ and Ψ and n→∞):

Case 1a. If α + β > 2k and 2k > max{α, β}, then

x(n) = nlog2(α+β)Φ({log2 n}) + nkΨ({log2 n})
+ O(nlog2 max{α,β}).
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function of degree k ≥ 1. Then (for 1-periodic continuous
functions Φ and Ψ and n→∞):

Case 2. If α + β = 2k , then

x(n) = nk(log n)Φ({log2 n}) + nkΨ({log2 n})
+ O(nlog2 max{α,β}+[α=β]ε)

for any ε > 0.
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function of degree k ≥ 1. Then (for 1-periodic continuous
functions Φ and Ψ and n→∞):

Case 3. If 2k > α + β > 2k−1, then

x(n) = nkΦ({log2 n}) + nlog2(α+β)Ψ({log2 n})
+ O

(
nlog2 max{α,β,2k−1}+[max{α,β}=2k−1]ε
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Divide-and-Conquer: Result
Theorem (H.–Krenn–Lechner 2024)
Let x be a divide-and-conquer sequence with polynomial toll
function of degree k ≥ 1. Then (for 1-periodic continuous
functions Φ and Ψ and n→∞):

Case 4. If 2k−1 ≥ α + β, then

x(n) = nkΦ({log2 n}) + O(nk−1(log n)E ),

where

E := 1 + [α + β = 2k−1]([k ≥ 2 and ck−1 6= 0]

+ [k = 1 and d0 + d1 6= 0])

with

d0 := (1− β)x(1)− g(1) + g(0), d1 := g(1)− (1− β)x(1).
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Min-Max: Fourier Coefficients

Computing Fourier coefficients using the general result . . .

1.0
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