Weak Separation Property & Finite Type **Condition**

Kevin G. Hare University of Waterloo Numeration 2024

KOD KARD KED KED BE YOUR

Definition

Define

$$
\Sigma_a = \{\{c_i\}_{i=1}^\infty : c_i \in \{0,a,6\}\}.
$$

There is a natural projection $\pi : \Sigma_a \to \mathbb{R}$ given by

$$
\pi(\{c_i\})=\sum_{i=1}^{\infty}\frac{c_i}{7^i}.
$$

Define $K_a = \pi(\Sigma_a)$. For $x \in K_a$ we define the set of addresses of *x* as

$$
\pi^{-1}(x) = \{\{c_i\} : \pi(\{c_i\}) = x\}.
$$

Fact

All x ∈ *K^a have at least one address. Depending on a and x, it is possible for x to have many more.*

Definition (Alternate Definition)

Consider $S_i(x) = \frac{x+i}{7}$. Then K_a is the unique non-empty compact set such that

$$
\mathcal{K}_a = \mathcal{S}_0(\mathcal{K}_a) \cup \mathcal{S}_a(\mathcal{K}_a) \cup \mathcal{S}_6(\mathcal{K}_a)
$$

Here we call $\{S_0, S_a, S_6\}$ an iterated function system (IFS), and *K^a* the attractor for the IFS.

KORK ERKER ADAM ADA

For this talk, we will always assume equicontractive and $hull(K) = [0, 1].$

Let $a = 2$.

KOD KARD KED KED BE YOUR

We see

 $S_0(K_2) \cap S_2(K_2) = S_0(K_2) \cap S_6(K_2) = S_2(K_2) \cap S_6(K_2) = \emptyset.$ This allows us to claim

Fact

For all $x \in K_2$, x has a unique addresss

This works for all $1 < a < 5$.

This is part of a more general property.

Definition

We say an IFS ${F_i}$ satisfies the strong separation property (SSP) if $F_i(K) \cap F_i(K) = \emptyset$ for all $i \neq j$.

Fact

For an IFS satisfying the SSP, every address is unique. The Hausdorff dimension is easily computed. For example dim_H $(K_2) = \log(3)/\log(7) \approx 0.5645$.

KOD KOD KED KED E VOOR

Let $a = 1$.

We see $S_0(K_1) \cap S_1(K_1) = 1/7$. In particular

 $\pi^{-1}(1/7)=\{\{0,6,6,6,\dots\},\{1,0,0,0,\dots\}\}$

Fact

For all $\sigma \in \{0, 1, 6\}^*$ *we have* $\pi(\sigma 0666 \dots) = \pi(\sigma 1000 \dots)$ *. All other points have a unique address.*

KORK ERKER ADAM ADA

This is part of a more general property.

Definition

We say an IFS {*Fi*} satisfies the open set condition (OSC) if there exists an open set *V* such that $F_i(V) \cap F_i(V) = \emptyset$ for all *i* \neq *j* and *F*₍ V) ⊂ *V* for all *i*..

Definition

We say the IFS ${F_i}$ satisfies the convex open set condition (OSC_{co}) if $V = (0, 1)$.

Fact

For an IFS satisfying the OSC, almost every address is unique. The Hausdorff dimension is easily computed. For example dim_H (K_1) = log(3)/log(7) \approx 0.5645.

Let $a = 6/7$.

We see $S_0 \circ S_6 = S_a \circ S_0$. This means that if x has address *c*1*c*2*c*³ . . . we can replace any occurance of 06 with *a*0 and vice-a-versa. For example

- $x = \pi(a00000...)$ has two addresses,
- $x = \pi(066666...)$ has countably many addresses and
- $x = \pi(060606...)$ has uncountably many addresses.

Let
$$
\sigma = c_1 c_2 \dots c_m \in \{0, a, 6\}^*
$$
. We define $S_{\sigma} = S_{c_1} \circ S_{c_2} \circ \cdots \circ S_{c_m}$.

Definition

We say an IFS {*Fi*} satisfies the weak separation property (WSP) if there exists a $c > 0$ such that for all σ, τ with $|\sigma| = |\tau|$ $\mathsf{either}\ S_\sigma = \mathcal{S}_\tau \ \mathsf{or}\ \frac{S_\sigma(0)-S_\tau(0)}{|S_\sigma([0,1])|}\geq c.$

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Definition

Let σ , τ be finite words with $|\sigma| = |\tau|$. For an open set *V* we say that σ and τ are neighbours if $S_{\sigma}(V) \cap S_{\tau}(V) \neq \emptyset$.

Definition

We say an IFS ${F_i}$ satisfes the finite type condition (FTC) if there exists a *V* such that there are only finitelly many neighbourhood sets

$$
\{S_{\sigma}^{-1}\circ S_{\tau} : \sigma \text{ is a neighbour of } \tau\}
$$

Definition

We say an IFS {*Fi*} satisifes the convex finite type condition (FTC_{co}) if $V = (0, 1)$.

KOD KOD KED KED E VOOR

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 19 Q Q

Take $a = 1/2$ for K_a

K ロ > K 個 > K ミ > K ミ > 「ミ → の Q Q →

Take $a = 1/2$ for K_a

Nguyen 2002

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

Take $a = 1/2$ for K_a

Nguyen 2002

Feng 2016, Hare, H., Rutar, 2021

$$
WSP + K = [0, 1]
$$
\n
$$
OSC_{co} \Rightarrow FTC_{co} \nleftrightarrow WSP + K \neq [0, 1]
$$
\n
$$
SSP \Rightarrow OSC \Rightarrow FTC \implies WSP
$$

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ 約 9 (9)

Take $a = 1/2$ for K_a

Nguyen 2002

Feng 2016, Hare, H., Rutar, 2021

Hare, arXiv:2403.00693

$$
WSP + K = [0, 1]
$$
\n
$$
OSC_{co} \Rightarrow FTC_{co} \stackrel{\not\downarrow}{\Leftrightarrow} WSP + K \neq [0, 1]
$$
\n
$$
SSP \Rightarrow OSC \Rightarrow FTC \Rightarrow WSP
$$

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ 約 9 (9)

Take $a = 1/2$ for K_a

Nguyen 2002

Feng 2016, Hare, H., Rutar, 2021

Hare, arXiv:2403.00693

$$
WSP + K = [0, 1]
$$
\n
$$
OSC_{co} \Rightarrow FTC_{co} \nleftrightarrow WSP + K \neq [0, 1]
$$
\n
$$
SSP \Rightarrow OSC \Rightarrow FTC \Rightarrow WSP
$$

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ 約 9 (9)

Take $a = 1/2$ for K_a

Nguyen 2002

Feng 2016, Hare, H., Rutar, 2021

Hare, arXiv:2403.00693

• Start with $\sigma_1 = 0$ and $\tau_1 = a$ for $0 < a < 1$.

• Start with $\sigma_1 = 0$ and $\tau_1 = a$ for $0 < a < 1$.

• Let
$$
S_{\sigma_n}(0) < S_{\tau_n}(0)
$$
. Choose a, c_{n+1}, c'_{n+1} so that $\sigma_{n+1} = \sigma_n c_{n+1}$ and $\tau_{n+1} = \tau_n c'_{n+1}$ are neighbours, and either $S_{\sigma_{n+1}}(0) < S_{\tau_{n+1}}(0)$ or $S_{\tau_{n+1}}(0) < S_{\sigma_{n+1}}(0)$.

• Start with $\sigma_1 = 0$ and $\tau_1 = a$ for $0 < a < 1$.

• Let
$$
S_{\sigma_n}(0) < S_{\tau_n}(0)
$$
. Choose a, c_{n+1}, c'_{n+1} so that $\sigma_{n+1} = \sigma_n c_{n+1}$ and $\tau_{n+1} = \tau_n c'_{n+1}$ are neighbours, and either $S_{\sigma_{n+1}}(0) < S_{\tau_{n+1}}(0)$ or $S_{\tau_{n+1}}(0) < S_{\sigma_{n+1}}(0)$.

• Similarly if
$$
S_{\sigma_n}(0) > S_{\tau_n}(0)
$$
.

- Start with $\sigma_1 = 0$ and $\tau_1 = a$ for $0 < a < 1$.
- Let $\mathcal{S}_{\sigma_n}(0) < \mathcal{S}_{\tau_n}(0)$. Choose a, c_{n+1}, c'_{n+1} so that $\sigma_{n+1} = \sigma_n c_{n+1}$ and $\tau_{n+1} = \tau_n c'_{n+1}$ are neighbours, and either $\mathcal{S}_{\sigma_{n+1}}(0) < \mathcal{S}_{\tau_{n+1}}(0)$ or $\mathcal{S}_{\tau_{n+1}}(0) < \mathcal{S}_{\sigma_{n+1}}(0).$

• Similarly if
$$
S_{\sigma_n}(0) > S_{\tau_n}(0)
$$
.

This gives us a sequences $0c_2c_3\ldots$ and $ac'_2c'_3\ldots$ such that for each $n, \sigma_n = 0$ $c_2 c_3 \ldots c_n$ and $\tau_n = ac'_2 c'_3 \ldots c'_n$ are neighbours.

KORK ERKER ADAM ADA

- Start with $\sigma_1 = 0$ and $\tau_1 = a$ for $0 < a < 1$.
- Let $\mathcal{S}_{\sigma_n}(0) < \mathcal{S}_{\tau_n}(0)$. Choose a, c_{n+1}, c'_{n+1} so that $\sigma_{n+1} = \sigma_n c_{n+1}$ and $\tau_{n+1} = \tau_n c'_{n+1}$ are neighbours, and either $\mathcal{S}_{\sigma_{n+1}}(0) < \mathcal{S}_{\tau_{n+1}}(0)$ or $\mathcal{S}_{\tau_{n+1}}(0) < \mathcal{S}_{\sigma_{n+1}}(0).$

• Similarly if
$$
S_{\sigma_n}(0) > S_{\tau_n}(0)
$$
.

- This gives us a sequences $0c_2c_3\ldots$ and $ac'_2c'_3\ldots$ such that for each $n, \sigma_n = 0$ $c_2 c_3 \ldots c_n$ and $\tau_n = ac'_2 c'_3 \ldots c'_n$ are neighbours.
- If we choose between these options in an aperiodic way, then we have an example that have an infinite number of neighbourhood types.

KORK ERKER ADAM ADA

K ロ K K B K K B K K B X X X K K K K G W X C

K ロ K K B K K B K K B X X X K K K K G W X C

K ロ K K B K K B K K B X X X K K K K G W X C

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q*

KOKK@KKEKKEK E 1990

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

Fact

Let $V = \bigcup_{\sigma} S_{\sigma}((3/7, 4/7))$ *. Then* $\{S_0, S_a, S_6\}$ *satisfy OSC with this V.*

Fact

It is possible to modify this example so that it does not satisfy OSC, nor FTCco, but does satisfy FTC.

Fact

For all $\sigma \in \{0, a, 6\}^*$ *we have* $\pi(\sigma c_1 c_2 \dots) = \pi(\sigma c_1' c_2' \dots)$ *. That is, we have a countable number of points with two non-periodic addresses, and all other points have unique addresses.*

KOD KOD KED KED E VOOR

[Thank you](#page-29-0)