Weak Separation Property & Finite Type Condition

Kevin G. Hare University of Waterloo Numeration 2024

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

Define

$$\Sigma_a = \{\{c_i\}_{i=1}^\infty : c_i \in \{0, a, 6\}\}.$$

There is a natural projection $\pi : \Sigma_a \to \mathbb{R}$ given by

$$\pi(\{\boldsymbol{c}_i\}) = \sum_{i=1}^{\infty} \frac{\boldsymbol{c}_i}{7^i}.$$

Define $K_a = \pi(\Sigma_a)$. For $x \in K_a$ we define the set of <u>addresses</u> of *x* as

$$\pi^{-1}(\mathbf{X}) = \{\{\mathbf{C}_i\} : \pi(\{\mathbf{C}_i\}) = \mathbf{X}\}.$$

Fact

All $x \in K_a$ have at least one address. Depending on a and x, it is possible for x to have many more.

Definition (Alternate Definition)

Consider $S_i(x) = \frac{x+i}{7}$. Then K_a is the unique non-empty compact set such that

$$\mathcal{K}_a = \mathcal{S}_0(\mathcal{K}_a) \cup \mathcal{S}_a(\mathcal{K}_a) \cup \mathcal{S}_6(\mathcal{K}_a)$$

Here we call $\{S_0, S_a, S_6\}$ an <u>iterated function system (IFS)</u>, and K_a the <u>attractor</u> for the IFS.

For this talk, we will always assume equicontractive and hull(K) = [0, 1].

<□▶ <圖▶ < 差▶ < 差▶ = 差 = のへで

Let *a* = 2.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We see

 $S_0(K_2) \cap S_2(K_2) = S_0(K_2) \cap S_6(K_2) = S_2(K_2) \cap S_6(K_2) = \emptyset.$ This allows us to claim

Fact

For all $x \in K_2$, x has a unique addresss

This works for all 1 < a < 5.

This is part of a more general property.

Definition

We say an IFS $\{F_i\}$ satisfies the strong separation property (SSP) if $F_i(K) \cap F_j(K) = \emptyset$ for all $i \neq j$.

Fact

For an IFS satisfying the SSP, every address is unique. The Hausdorff dimension is easily computed. For example $\dim_H(K_2) = \log(3)/\log(7) \approx 0.5645.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let *a* = 1.

We see $S_0(K_1) \cap S_1(K_1) = 1/7$. In particular

 $\pi^{-1}(1/7) = \{\{0, 6, 6, 6, \dots\}, \{1, 0, 0, 0, \dots\}\}$

Fact

For all $\sigma \in \{0, 1, 6\}^*$ we have $\pi(\sigma 0666...) = \pi(\sigma 1000...)$. All other points have a unique address.

This is part of a more general property.

Definition

We say an IFS $\{F_i\}$ satisfies the <u>open set condition (OSC)</u> if there exists an open set *V* such that $F_i(V) \cap F_j(V) = \emptyset$ for all $i \neq j$ and $F_i(V) \subset V$ for all *i*..

Definition

We say the IFS $\{F_i\}$ satisfies the <u>convex open set condition</u> (OSC_{co)} if V = (0, 1).

Fact

For an IFS satisfying the OSC, almost every address is unique. The Hausdorff dimension is easily computed. For example $\dim_H(K_1) = \log(3)/\log(7) \approx 0.5645$. Let a = 6/7.

We see $S_0 \circ S_6 = S_a \circ S_0$. This means that if *x* has address $c_1c_2c_3...$ we can replace any occurance of 06 with *a*0 and vice-a-versa. For example

- $x = \pi(a00000...)$ has two addresses,
- $x = \pi(066666...)$ has countably many addresses and
- $x = \pi(060606...)$ has uncountably many addresses.

Let
$$\sigma = c_1 c_2 \dots c_m \in \{0, a, 6\}^*$$
. We define $S_{\sigma} = S_{c_1} \circ S_{c_2} \circ \dots \circ S_{c_m}$.

Definition

We say an IFS {*F_i*} satisfies the <u>weak separation property</u> (WSP) if there exists a *c* > 0 such that for all σ, τ with $|\sigma| = |\tau|$ either $S_{\sigma} = S_{\tau}$ or $\frac{S_{\sigma}(0) - S_{\tau}(0)}{|S_{\sigma}([0,1])|} \ge c$.

(日) (日) (日) (日) (日) (日) (日)

Definition

Let σ, τ be finite words with $|\sigma| = |\tau|$. For an open set V we say that σ and τ are <u>neighbours</u> if $S_{\sigma}(V) \cap S_{\tau}(V) \neq \emptyset$.

Definition

We say an IFS $\{F_i\}$ satisfes the <u>finite type condition (FTC)</u> if there exists a *V* such that there are only finitelly many neighbourhood sets

$$\{ oldsymbol{S}_{\sigma}^{-1} \circ oldsymbol{S}_{ au} : \sigma ext{ is a neighbour of } au \}$$

Definition

We say an IFS $\{F_i\}$ satisifies the <u>convex finite type condition</u> (<u>FTC_{co}</u>) if V = (0, 1).

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Take a = 1/2 for K_a

Take a = 1/2 for K_a

Nguyen 2002

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Take a = 1/2 for K_a

Nguyen 2002

Feng 2016, Hare, H., Rutar, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Take a = 1/2 for K_a

Nguyen 2002

Feng 2016, Hare, H., Rutar, 2021

Hare, arXiv:2403.00693

$$WSP + K = [0, 1]$$

$$WSP + K \neq [0, 1]$$

$$K \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$SSP \qquad \Rightarrow \qquad OSC \qquad \Rightarrow \qquad FTC \qquad \Rightarrow \qquad WSP$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Take a = 1/2 for K_a

Nguyen 2002

Feng 2016, Hare, H., Rutar, 2021

Hare, arXiv:2403.00693

$$WSP + K = [0, 1]$$

$$WSP + K \neq [0, 1]$$

$$M = WSP + K \neq [0, 1]$$

$$M = WSP + K \neq [0, 1]$$

$$M = WSP$$

$$WSP = WSP$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Take a = 1/2 for K_a

Nguyen 2002

Feng 2016, Hare, H., Rutar, 2021

Hare, arXiv:2403.00693

• Start with $\sigma_1 = 0$ and $\tau_1 = a$ for 0 < a < 1.

• Start with $\sigma_1 = 0$ and $\tau_1 = a$ for 0 < a < 1.

• Let
$$S_{\sigma_n}(0) < S_{\tau_n}(0)$$
. Choose a, c_{n+1}, c'_{n+1} so that $\sigma_{n+1} = \sigma_n c_{n+1}$ and $\tau_{n+1} = \tau_n c'_{n+1}$ are neighbours, and either $S_{\sigma_{n+1}}(0) < S_{\tau_{n+1}}(0)$ or $S_{\tau_{n+1}}(0) < S_{\sigma_{n+1}}(0)$.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

• Start with $\sigma_1 = 0$ and $\tau_1 = a$ for 0 < a < 1.

• Let
$$S_{\sigma_n}(0) < S_{\tau_n}(0)$$
. Choose a, c_{n+1}, c'_{n+1} so that $\sigma_{n+1} = \sigma_n c_{n+1}$ and $\tau_{n+1} = \tau_n c'_{n+1}$ are neighbours, and either $S_{\sigma_{n+1}}(0) < S_{\tau_{n+1}}(0)$ or $S_{\tau_{n+1}}(0) < S_{\sigma_{n+1}}(0)$.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

• Similarly if
$$S_{\sigma_n}(0) > S_{\tau_n}(0)$$
.

- Start with $\sigma_1 = 0$ and $\tau_1 = a$ for 0 < a < 1.
- Let $S_{\sigma_n}(0) < S_{\tau_n}(0)$. Choose a, c_{n+1}, c'_{n+1} so that $\sigma_{n+1} = \sigma_n c_{n+1}$ and $\tau_{n+1} = \tau_n c'_{n+1}$ are neighbours, and either $S_{\sigma_{n+1}}(0) < S_{\tau_{n+1}}(0)$ or $S_{\tau_{n+1}}(0) < S_{\sigma_{n+1}}(0)$.

• Similarly if
$$S_{\sigma_n}(0) > S_{\tau_n}(0)$$
.

This gives us a sequences 0c₂c₃... and ac'₂c'₃... such that for each n, σ_n = 0c₂c₃... c_n and τ_n = ac'₂c'₃... c'_n are neighbours.

(日) (日) (日) (日) (日) (日) (日)

- Start with $\sigma_1 = 0$ and $\tau_1 = a$ for 0 < a < 1.
- Let $S_{\sigma_n}(0) < S_{\tau_n}(0)$. Choose a, c_{n+1}, c'_{n+1} so that $\sigma_{n+1} = \sigma_n c_{n+1}$ and $\tau_{n+1} = \tau_n c'_{n+1}$ are neighbours, and either $S_{\sigma_{n+1}}(0) < S_{\tau_{n+1}}(0)$ or $S_{\tau_{n+1}}(0) < S_{\sigma_{n+1}}(0)$.

• Similarly if
$$S_{\sigma_n}(0) > S_{\tau_n}(0)$$
.

- This gives us a sequences 0c₂c₃... and ac'₂c'₃... such that for each n, σ_n = 0c₂c₃... c_n and τ_n = ac'₂c'₃... c'_n are neighbours.
- If we choose between these options in an aperiodic way, then we have an example that have an infinite number of neighbourhood types.

(日) (日) (日) (日) (日) (日) (日)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

・ロト・四ト・モート ヨー うへの

Fact

Let $V = \bigcup_{\sigma} S_{\sigma}((3/7, 4/7))$. Then $\{S_0, S_a, S_6\}$ satisfy OSC with this V.

Fact

It is possible to modify this example so that it does not satisfy OSC, nor FTC_{co} , but does satisfy FTC.

Fact

For all $\sigma \in \{0, a, 6\}^*$ we have $\pi(\sigma c_1 c_2 \dots) = \pi(\sigma c'_1 c'_2 \dots)$. That is, we have a countable number of points with two non-periodic addresses, and all other points have unique addresses.

・ コット (雪) (小田) (コット 日)

Thank you

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●