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Theory of normality base b

Let Nb ⊆ [0, 1] denote the set of numbers that are normal base b.
1 For x ∈ [0, 1] we have x ∈ Nb if and only if (bnx)∞n=1 is

uniformly distributed.
2 Rauzy [Rau76] characterized the y ∈ [0, 1] for which

y +Nb ⊆ Nb using an entropy-like condition called noise.
3 The work of Kamae and Weiss [KW75, Kam73] characterizes

those (an)
∞
n=1 ⊆ N for which x = 0.x1x2 · · · xn · · · ∈ Nb

implies x ′ = 0.xa1xa2 · · · xan · · · ∈ Nb.
4 The Hot Spot Theorem of Pyatetski-Shapiro [Pv57] says that

if x ∈ [0, 1] is such that (bnx)∞n=1 is ’almost’ uniformly
distributed, then x ∈ Nb.
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Theory of normality for continued fractions
A number x ∈ [0, 1] is continued fraction (c.f.) normal if
(T nx)∞n=1 is uniformly distributed with respect to the Gauss
measure, where T : [0, 1] → [0, 1] is the Gauss map.

1 x ∈ [0, 1] is c.f. normal if and only if for any ` ∈ N and any
w ∈ N`, the word w appears in the c.f. expansion of x with
the ’correct’ frequency.

2 Vandehey [Van17] showed that if that a, b, c, d ∈ Z are such
that ad − bc 6= 0, and x is c.f. normal, then so is ax+b

cx+d .
3 Vandehey and Heersink [HV16] showed that if

x = [x1, x2, · · · , xn, · · · ] ∈ [0, 1] is continued fraction normal,
and a, b ∈ N with b ≥ 2, then [xa, xa+b, · · · , xa+nb, · · · ] is
NOT continued fraction normal.

4 Shkredov and Moshchevitin [MS03, AM20, Shk10] proved a
Hot Spot Theorem for continued fractions.
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Theory of normality for general Cantor series
Let Q ∈ (N≥2)

N be a basic sequence. x ∈ [0, 1] is Q-distribution
normal if (qn · · · q1x)∞n=1 is uniformly distributed, and x is
Q-normal if all blocks of potential digits in the base Q expansion
of x appear with the “correct” frequency. Let DN (Q) and N (Q)
be the set of Q-distribution normal and Q-normal numbers.

Theorem (Airey, Jackson, and Mance [AJM22])
If Q = (qn)

∞
n=1 is such that limn→∞ qn = ∞ and

∑∞
n=1 q−1

n = ∞,
then DN (Q) \ N (Q) and N (Q) \ DN (Q) are D2(Π

0
3)-complete.

This shows that for many Cantor series we are lacking the
necessary connection between combinatorics and dynamics that is
used to develop a rich theory of normality. This is because we can
only associate a general basic sequence to a non-autonomous
dynamical system. Is there a reasonable class of Cantor series for
which we have DN (Q) = N (Q)?
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Dynamically generated basic sequences
A basic sequence Q = (qn)

∞
n=1 is dynamically generated if there

exists a “nice” measure preserving system X := (X ,B, µ,T ), a
function f : X → N≥2, and a generic point x ∈ X for which
qn = f (T nx). Normality and distribution normality for the basic
sequence Q is naturally studied through a dynamical system X ′

that is a skew-product over X . This allows for the new notions of
uniform normality UN (Q) and uniform distribution normality
UDN (Q), as well as

1 The relation UN (Q) = UDN (Q).
2 The relation N (Q) = DN (Q) = UN (Q) when X has zero

entropy.
3 A Hot Spot Theorem for DN (Q) when X has zero entropy.
4 Many interesting counter-examples when X is a Bernoulli

system.
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