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Short Abstract:

How do the expansions in base phi look like?

What is the relation with the Zeckendorf expansions?
| will give answers to these questions in my talk.
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There are hundreds of papers on these systems.



Special recent progress

Jeffrey Shallit and coworkers using Walnut:

Jeffrey O. Shallit, Sonja Linghui Shan: A General Approach to
Proving Properties of Fibonacci Representations via Automata
Theory. AFL 2023: 228-242 (2023)

Jeffrey O. Shallit: Proving Results About OEIS Sequences with
Walnut. CICM 2023: 270-282 (2023)

Jeffrey O. Shallit: Note on a Fibonacci parity sequence. Cryptogr.
Commun. 15(2): 309-315 (2023)

Jeffrey O. Shallit: Proving Properties of p-Representations with
the Walnut Theorem-Prover (2024)

and many more.....
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Base phi representation

A natural number N is written in base phi if
e .
V-3 a
i=—o00

with digits d; = 0 or 1, and where d;d;1; = 11 is not allowed.

Similarly to base 10 numbers, we write these representations as

B(N) = dyd;_1...dido-d_1d_>...dgy1dR.

The convention is that we are ignoring leading and trailing zeroes.

THEOREM The base phi representation of N is unique.
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Base phi representation Example

Check:

B(2) = 10-01



Zeckendorf representations

Let Fp =0, F1 =1, F, =1,... be the Fibonacci numbers.

Ignoring leading zeros, any natural number N can be written
uniquely as

o0
N=>"diFio,
i=0

with digits d; = 0 or 1, and where d;d;1; = 11 is not allowed.

We write Z(N) = d, . . . do.



Zeckendorf representations

Let Fp =0, F1 =1, F, =1,... be the Fibonacci numbers.

Ignoring leading zeros, any natural number N can be written

[o.¢]
N=Y dFi,
i=0
with digits d; = 0 or 1, and where d;d;1; = 11 is not allowed.

We write Z(N) = d, . . . do.

uniquely as

EXAMPLE Z(6) = 1001, since F5 =5, F, = 1.



Zeckendorf and base phi

N ZN) [ BN)

1 1 1

2 10 10-01

3 100 100-01

4 101 101-01

5 1000 1000-1001

6 1001 1010-0001

7 1010 10000-0001
8 10000 10001-0001

9 10001 10010-0101
10 10010 10100-0101
11 10100 10101-0101
12 10101 100000-101001
13 | 100000 100010-001001
14 | 100001 100100-001001
15 | 100010 100101-001001




Splitting the base phi expansion

We define
BT(N) =did_1--- didy.

ﬂf(N) =d_1d_5--drti1dr.
So B(N) = BT (N)-B~(N).



Connecting Zeckendorf and base phi [1]

N | Z(N) | B(N)|B~(N)
1 1 1]

2 10 10 | -01

3 100 100 | -01

4 101 101 | -01

5 1000 1000 | -1001

6 1001 1010 | -0001

7 1010 10000 | -0001

8 10000 10001 | -0001

9 10001 10010 | -0101
10 10010 10100 | -0101
11 10100 10101 | -0101
12 10101 | 100000 | -101001
13 | 100000 | 100010 | -001001
14 | 100001 | 100100 | -001001
15 | 100010 | 100101 | -001001




Connecting Zeckendorf and base phi [2]

N | Z(N) | B*(N) | B~(N)
1 1 1

2 10 10 | -01

3 100 100 | -01

4 101 101 | -01

5 1000 1000 | -1001

6 1001 1010 | -0001

7 1010 | 10000 | -0001

8 10000 | 10001 | -0001

9 10001 | 10010 | -0101
10 10010 | 10100 | -0101
11 10100 | 10101 | -0101
12 10101 | 100000 | -101001
13 | 100000 | 100010 | -001001
14 | 100001 | 100100 | -001001
15 | 100010 | 100101 | -001001




Connecting Zeckendorf and base phi [3]

N | Z(N) | B*(N) | B~(N)
1 1 1

2 10 10 | -01

3 100 100 | -01

4 101 101 | -01

5 1000 1000 | -1001

6 1001 1010 | -0001

7 1010 | 10000 | -0001

8 10000 | 10001 | -0001

9 10001 | 10010 | -0101
10 10010 | 10100 | -0101
11 10100 | 10101 | -0101
12 10101 | 100000 | -101001
13 | 100000 | 100010 | -001001
14 | 100001 | 100100 | -001001
15 | 100010 | 100101 | -001001




Connecting Zeckendorf and base phi [4]

N | Z(N) | B*(N) | B~(N)
1 1 1

2 10 10 | -01

3 100 100 | -01

4 101 101 | -01

5 1000 1000 | -1001

6 1001 1010 | -0001

7 1010 | 10000 | -0001

8 10000 | 10001 | -0001

9 10001 | 10010 | -0101
10 10010 | 10100 | -0101
11 10100 | 10101 | -0101
12 10101 | 100000 | -101001
13 | 100000 | 100010 | -001001
14 | 100001 | 100100 | -001001
15 | 100010 | 100101 | -001001




Connecting Zeckendorf and base phi [5]

N | Z(N) | B*(N) | B~(N)
1 1 1

2 10 10 | -01

3 100 100 | -01

4 101 101 | -01

5 1000 1000 | -1001

6 1001 1010 | -0001

7 1010 | 10000 | -0001

8 10000 | 10001 | -0001

9 10001 | 10010 | -0101
10 10010 | 10100 | -0101
11 10100 | 10101 | -0101
12 10101 | 100000 | -101001
13 | 100000 | 100010 | -001001
14 | 100001 | 100100 | -001001
15 | 100010 | 100101 | -001001




Connecting Zeckendorf and base phi [6]

N | Z(N) | B*(N) | B~(N)
1 1 1

2 10 10 | -01

3 100 100 | -01

4 101 101 | -01

5 1000 1000 | -1001

6 1001 1010 | -0001

7 1010 | 10000 | -0001

8 10000 | 10001 | -0001

9 10001 | 10010 | -0101
10 10010 | 10100 | -0101
11 10100 | 10101 | -0101
12 10101 | 100000 | -101001
13 | 100000 | 100010 | -001001
14 | 100001 | 100100 | -001001
15 | 100010 | 100101 | -001001
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For example 101001 is skipped. This is Z(19).

Next 1001001, which is Z(27).
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Connecting Zeckendorf and base phi: how?

What are the missing words 1001, 100001, ...7

ANSWER: These are all the words with suffix 1021, for some
m=12,....

For example 101001 is skipped. This is Z(19).

Next 1001001, which is Z(27).

For which N do they occur in (Z(N))?

ANSWER:
(Vadp(N)) = (6, 14,19, 27, 35,40, 48,53, 61,69, 74, ... ).

I will show: Vi, (N) = 3|pN| +2N + 1, where N =1,2,...

Allouche & Dekking call this a generalized Beatty sequence.
In general: V(p,q,r) = pleN]| + gN +r.



Connecting Zeckendorf and base phi: how [2]

Consider the sequence of first order differences of
(Vekip(N)) = (6,14,19,27,35,40,48,53,61,69,74,...):
AV, = 8,5,8,8,5,8,5,8,8,5,. ..
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Connecting Zeckendorf and base phi: how [2]

Consider the sequence of first order differences of
(Vekip(N)) = (6,14,19,27,35,40,48,53,61,69,74,...):
AV, = 8,5,8,8,5,8,5,8,8,5,. ..

Do we recognize this?
The Fibonacci word on the alphabet {8, 5)!
This is a general property of generalized Beatty sequences:

LEMMA GBS Let V = (V,)s>1 be the generalized Beatty
sequence defined by V,, = p|ny| + gn+ r, and let AV be the
sequence of its first differences. Then AV is the Fibonacci word
over the alphabet {2p + q, p + q}. Conversely, if x, p is the
Fibonacci word over the alphabet {a, b}, then every V with
AV = x,p is a generalized Beatty sequence

V = V(a— b,2b— a,r) for some integer r.



Connecting Zeckendorf and base phi: how [2]

Consider the sequence of first order differences of
(Vekip(N)) = (6,14,19,27,35,40,48,53,61,69,74,...):
AV, = 8,5,8,8,5,8,5,8,8,5,. ..

Do we recognize this?
The Fibonacci word on the alphabet {8, 5)!

This is a general property of generalized Beatty sequences:

LEMMA GBS Let V = (V,)s>1 be the generalized Beatty
sequence defined by V,, = p|ny| + gn+ r, and let AV be the
sequence of its first differences. Then AV is the Fibonacci word
over the alphabet {2p + q, p + q}. Conversely, if x, p is the
Fibonacci word over the alphabet {a, b}, then every V with
AV = x,p is a generalized Beatty sequence

V = V(a— b,2b— a,r) for some integer r.

In the AV, case: p=3,q9=2.
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Connecting Zeckendorf and base phi: how [3]

But, how do you prove that Viip(N) = 3|pN| + 2N + 17
For this one analyses the skipping process.

The essential ingredient in this analysis is the following result from
D: Base phi representations and golden mean beta-expansions,
Fibonacci Quart. 58 (2020).

PROPOSITION Let 3(N) = (d;(N)) be the base phi expansion

of N. Then

didy - d_1(N) = 10 - 1 never occurs,

dido - d—1(N) =001« N = 3|np]| +n+1for some natural number n.



Connecting Zeckendorf and base phi: how [4]

Step by step: Z(N) — Z(N + 1) and B(N') — B(N' + 1)....

Zeckendorf Base golden mean
Thecased 1 =0,dy=0



Connecting Zeckendorf and base phi: how [4]

Step by step: Z(N) — Z(N + 1) and B(N') — B(N' + 1)....

Zeckendorf Base golden mean
Thecased 1 =0,dy=0

Z(N)=d; -~ d»dy 0 BINY=dy- -1 0-0d_s---
1 1-0
+
Z(N+1):dL-~'d2d11 ,B(N,Jrl):dL--'dll-Od,z"-

N.B. If &y = 1, then both Z(N + 1) and 87 (N + 1) would end in
11. One has to get rid of this by applying a number of times

011 — 100, both for Z and for 3. This results in equal words
Z(N +1) and BT(N +1).



Connecting Zeckendorf and base phi: how [5]

Zeckendorf Base golden mean
Thecased 1=0,dy=1



Connecting Zeckendorf and base phi: how [5]

Zeckendorf Base golden mean
Thecased 1=0,dy=1

Z(N)=d,---dr01 B(N)=dy---dr01-0d 5---
1 1-0
+ +
Z(IN+1)=d ---dr10 BN'+1)=d;---dr02-0d 5"

BIN'+1)=d;---dr10-0(d_p+1)--



Connecting Zeckendorf and base phi: how [6]

Zeckendorf Base golden mean
Thecased 1=1=dy=0,d1 =0



Connecting Zeckendorf and base phi: how [6]

Zeckendorf Base golden mean
Thecased 1=1=dy=0,d1 =0

Z(N)=d, -+ dr00 B(N'Y=dy- - dr00-1d_p---
1 1-0
+ +
ZIN+1)=d, - dr01 BN +1)=d, - dh01-1d_p---

BIN'+1)=d---dr10-0d_p---



Connecting Zeckendorf and base phi: how [6]

Zeckendorf Base golden mean
Thecased 1=1=dy=0,d1 =0

Z(N)=d, -+ dr00 B(N'Y=dy- - dr00-1d_p---
1 1-0
+ +
ZIN+1)=d, - dr01 BN +1)=d, - dh01-1d_p---

BIN'+1)=d,---dr10-0d_5---

Z(N+1)=d,---d>01 has been skipped!



Where are the d_; =17

We have seen: skipping happens exactly at the d_; = 1.



Where are the d_; =17

We have seen: skipping happens exactly at the d_; = 1.

Now recall:

PROPOSITION Let 5(N) = (di(N)) be the base phi expansion
of N. Then

didy - d_1(N) =10 - 1 never occurs,
didg - d_1(N) =00-1< N = 3[¢n| +n+1for some natural number n.

With LEMMA GBS this directly yields that
Vikip(N) = 3|pN| + 2N + 1.



Base phi and the Lucas numbers
The Lucas numbers (L,) = (2,1,3,4,7,11,18,29,...) :
Lo=2, Li=1L,=L,1+4+L,» forn>2.

From Lo, = ¢?"+ 72", and Lop+1 = Loy + Lop—1:
B(L2n) = 10*"-0°""*1,  B(Lans1) = 1(01)"-(01)".



Base phi and the Lucas numbers
The Lucas numbers (L,) = (2,1,3,4,7,11,18,29,...) :
Lo=2, Li=1L,=L,1+4+L,» forn>2.

From Lo, = ¢?"+ 72", and Lop+1 = Loy + Lop—1:
B(L2n) = 10*"-0°""*1,  B(Lans1) = 1(01)"-(01)".



The basis for proving properties of base phi

RECURSIVE STRUCTURE THEOREM

Let the odd and even Lucas intervals be given by
Nont1 = [Lant1 + 1, Lopy2 — 1], Aops2 = [Lont2, Lants]-
(A) Foralln>2and k=1,...,Ly, — 1, we have

I o B(Lant1 + k) = 1000(10) 1 B(Lan_1 + k)(01)711001,
Kn: B(Lons1+ Lan_1 + k) = 1010(10) " B(Lan_1 + k)(01)~10001.

Moreover, for all n > 2 and k =0,...,L>,_1, we have
Joo B(Lang1+Lon_2+k) = 10010(10) "1 8(Lay—2+k)(01)"1001001.
(B) Foralln>1and k=0,...,Ly,1 one has

B(Lans2 + k) = B(Lany2) + B(k) = 10---05(k)0--- 01



History of RCST

P. Filipponi and E. Hart. The Zeckendorf decomposition of certain
Fibonacci-Lucas products. Fibonacci Quart. 36 (1998).

E. Hart, On using patterns in the beta-expansions to study
Fibonacci-Lucas products, Fibonacci Quart. 36 (1998).

E. Hart and L. Sanchis, On the occurrence of F, in the Zeckendorf
decomposition of nF,, Fibonacci Quart. 37 (1999).

G.R. Sanchis and L.A. Sanchis, On the frequency of occurrence of

a' in the a-expansions of the positive integers, Fibonacci Quart.
39 (2001).
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History of RCST

P. Filipponi and E. Hart. The Zeckendorf decomposition of certain
Fibonacci-Lucas products. Fibonacci Quart. 36 (1998).

E. Hart, On using patterns in the beta-expansions to study
Fibonacci-Lucas products, Fibonacci Quart. 36 (1998).

E. Hart and L. Sanchis, On the occurrence of F, in the Zeckendorf
decomposition of nF,, Fibonacci Quart. 37 (1999).

G.R. Sanchis and L.A. Sanchis, On the frequency of occurrence of
a' in the a-expansions of the positive integers, Fibonacci Quart.
39 (2001).

Repaired:

D.: How to add two natural numbers in base phi, Fibonacci Quart.
59 (2021).

More friendly versions:

D.: The structure of base phi expansions, INTEGERS (2024).



What about the 5~ (N) part?

N | Z(N) | BF(N) | B~(N)
1 1 1]

2 10 10 | -01

3 100 100 | -01

4 101 101 | -01

5 1000 1000 | -1001

6 1001 1010 | -0001

7 1010 10000 | -0001

8 10000 10001 | -0001

9 10001 10010 | -0101
10 10010 10100 | -0101
11 10100 10101 | -0101
12 10101 | 100000 | -101001
13 | 100000 | 100010 | -001001
14 | 100001 | 100100 | -001001
15 | 100010 | 100101 | -001001




The return of Zeckendorf!

THEOREM All Zeckendorf words of even length ending in 1
appear as 5~ (N)-blocks.

Zeckendorf word := word in which 11 does not occur.



Coding the 5~ (N)

Let =, := Aop—1 U A2y = [Lop—1 + 1, Lopy1].

The =, are the intervals where 37 (N) has length 2n.
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C(B~(N)) such that all numbers {0,1,..., Fo, — 1} appear.
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Coding the 5~ (N)

Let =, := Aop—1 U N2y = [Lop—1 + 1, Lopy1].
The =, are the intervals where 37 (N) has length 2n.

Surprisingly, on each =, the 5~ (N) can be coded by a number
C(B~(N)) such that all numbers {0,1,..., Fo, — 1} appear.

The code is given by C(N) = Z71(8~(N)171071).

Here 0's as prefix of 5~ (N) are ignored.
For example: 37(9) 171071 = 0101171071 = 01, so C(9) = 1.



The structure of the 57 (N)

THEOREM For all natural numbers n, consider the F,,
Zeckendorf words of length 2n occurring as 5~ (N) in the
[b-expansions of the numbers in =,. Then these occur in an order
given by a permutation I'Ign, which is the orbit of the element
F>, — 1 under addition by the element F5,_» on the cyclic group
Z]FanZ.
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The structure of the 57 (N)

THEOREM For all natural numbers n, consider the F,,
Zeckendorf words of length 2n occurring as 5~ (N) in the
[b-expansions of the numbers in =,. Then these occur in an order
given by a permutation I'Ign, which is the orbit of the element

F>, — 1 under addition by the element F5,_» on the cyclic group
Z]FanZ.

EXAMPLE For n = 3, we have =3 = As U N = {12,13,...,29},
furthermore F>, = Fg = 8, Foh—1=17, Fop_o=F4=3.

On the next slide we see that Mg = (72503614).

+3
73,08, 583, 03,318,653, 34



N [ Aint. | -B-(N) [C(N)
12 As -101001 7
13 As -001001 2
14 As -001001 2
15 As -001001 2
16 As -100001 5
17 | As | -000001 | 0
18 | As | 000001 | 0
19 N -000001 0
20 | Ag |-010001 | 3
21 | As | -010001 | 3
22 | A | -010001 | 3
23 | A | -100101 | 6
24 N6 -000101 1
25 Ne -000101 1
26 Ne -000101 1
27 N -010101 4
28 N6 -010101 4
29 N -010101 4




Stop

THE END



