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Short Abstract:
How do the expansions in base phi look like?
What is the relation with the Zeckendorf expansions?
I will give answers to these questions in my talk.
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Special recent progress

Jeffrey Shallit and coworkers using Walnut:

Jeffrey O. Shallit, Sonja Linghui Shan: A General Approach to
Proving Properties of Fibonacci Representations via Automata
Theory. AFL 2023: 228-242 (2023)

Jeffrey O. Shallit: Proving Results About OEIS Sequences with
Walnut. CICM 2023: 270-282 (2023)

Jeffrey O. Shallit: Note on a Fibonacci parity sequence. Cryptogr.
Commun. 15(2): 309-315 (2023)

Jeffrey O. Shallit: Proving Properties of ϕ-Representations with
the Walnut Theorem-Prover (2024)

and many more.....



Base phi representation

A natural number N is written in base phi if

N =
∞∑

i=−∞
diϕ

i ,

with digits di = 0 or 1, and where didi+1 = 11 is not allowed.

Similarly to base 10 numbers, we write these representations as

β(N) = dLdL−1 . . . d1d0·d−1d−2 . . . dR+1dR .

The convention is that we are ignoring leading and trailing zeroes.

THEOREM The base phi representation of N is unique.
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Base phi representation Example

β(2) = 10·01

Check:

ϕ+
1

ϕ2
=

ϕ+
1

1 + ϕ
=

ϕ+ ϕ2 + 1

1 + ϕ
=

ϕ+ ϕ+ 1 + 1

1 + ϕ
= 2.
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Zeckendorf representations

Let F0 = 0, F1 = 1, F2 = 1, . . . be the Fibonacci numbers.

Ignoring leading zeros, any natural number N can be written
uniquely as

N =
∞∑
i=0

diFi+2,

with digits di = 0 or 1, and where didi+1 = 11 is not allowed.

We write Z (N) = dL . . . d0.

EXAMPLE Z (6) = 1001, since F5 = 5,F2 = 1.
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Zeckendorf and base phi

N Z (N) β(N)

1 1 1·
2 10 10·01
3 100 100·01
4 101 101·01
5 1000 1000·1001
6 1001 1010·0001
7 1010 10000·0001
8 10000 10001·0001
9 10001 10010·0101

10 10010 10100·0101
11 10100 10101·0101
12 10101 100000·101001
13 100000 100010·001001
14 100001 100100·001001
15 100010 100101·001001



Splitting the base phi expansion

We define
β+(N) = dLdL−1 · · · d1d0.

β−(N) = d−1d−2 · · · dR+1dR .

So β(N) = β+(N)·β−(N).



Connecting Zeckendorf and base phi [1]

N Z (N) β+(N) β−(N)

1 1 1 ·
2 10 10 ·01
3 100 100 ·01
4 101 101 ·01
5 1000 1000 ·1001
6 1001 1010 ·0001
7 1010 10000 ·0001
8 10000 10001 ·0001
9 10001 10010 ·0101

10 10010 10100 ·0101
11 10100 10101 ·0101
12 10101 100000 ·101001
13 100000 100010 ·001001
14 100001 100100 ·001001
15 100010 100101 ·001001



Connecting Zeckendorf and base phi [2]

N Z (N) β+(N) β−(N)

1 1 1 ·
2 10 10 ·01
3 100 100 ·01
4 101 101 ·01
5 1000 1000 ·1001
6 1001 1010 ·0001
7 1010 10000 ·0001
8 10000 10001 ·0001
9 10001 10010 ·0101

10 10010 10100 ·0101
11 10100 10101 ·0101
12 10101 100000 ·101001
13 100000 100010 ·001001
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Connecting Zeckendorf and base phi [4]
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Connecting Zeckendorf and base phi [5]

N Z (N) β+(N) β−(N)

1 1 1 ·
2 10 10 ·01
3 100 100 ·01
4 101 101 ·01
5 1000 1000 ·1001
6 1001 1010 ·0001
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Connecting Zeckendorf and base phi [6]

N Z (N) β+(N) β−(N)

1 1 1 ·
2 10 10 ·01
3 100 100 ·01
4 101 101 ·01
5 1000 1000 ·1001
6 1001 1010 ·0001
7 1010 10000 ·0001
8 10000 10001 ·0001
9 10001 10010 ·0101

10 10010 10100 ·0101
11 10100 10101 ·0101
12 10101 100000 ·101001
13 100000 100010 ·001001
14 100001 100100 ·001001
15 100010 100101 ·001001



Connecting Zeckendorf and base phi: how?

What are the missing words 1001, 100001, . . . ?

ANSWER: These are all the words with suffix 102m1, for some
m = 1, 2, . . . .

For example 101001 is skipped. This is Z (19).

Next 1001001, which is Z (27).

For which N do they occur in (Z (N))?

ANSWER:
(Vskip(N)) = (6, 14, 19, 27, 35, 40, 48, 53, 61, 69, 74, . . . ).

I will show: Vskip(N) = 3bϕNc+ 2N + 1, where N = 1, 2, . . .

Allouche & Dekking call this a generalized Beatty sequence.

In general: V (p, q, r) = pbϕNc+ qN + r .
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Connecting Zeckendorf and base phi: how [2]

Consider the sequence of first order differences of
(Vskip(N)) = (6, 14, 19, 27, 35, 40, 48, 53, 61, 69, 74, . . . ):

∆Vskip = 8, 5, 8, 8, 5, 8, 5, 8, 8, 5, . . .

Do we recognize this?

The Fibonacci word on the alphabet {8, 5)!

This is a general property of generalized Beatty sequences:

LEMMA GBS Let V = (Vn)n≥1 be the generalized Beatty
sequence defined by Vn = pbnϕc+ qn + r , and let ∆V be the
sequence of its first differences. Then ∆V is the Fibonacci word
over the alphabet {2p + q, p + q}. Conversely, if xa,b is the
Fibonacci word over the alphabet {a, b}, then every V with
∆V = xa,b is a generalized Beatty sequence
V = V (a− b, 2b − a, r) for some integer r .

In the ∆Vskip case: p = 3, q = 2.
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Connecting Zeckendorf and base phi: how [3]

But, how do you prove that Vskip(N) = 3bϕNc+ 2N + 1?

For this one analyses the skipping process.

The essential ingredient in this analysis is the following result from
D: Base phi representations and golden mean beta-expansions,
Fibonacci Quart. 58 (2020).

PROPOSITION Let β(N) = (di (N)) be the base phi expansion
of N. Then

d1d0 · d−1(N) = 10 · 1 never occurs,

d1d0 · d−1(N) = 00 · 1⇔ N = 3bnϕc+n +1 for some natural number n.
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Connecting Zeckendorf and base phi: how [4]

Step by step: Z (N) 7→ Z (N + 1) and β(N ′) 7→ β(N ′ + 1)....

Zeckendorf Base golden mean

The case d−1 = 0, d0 = 0

Z (N) = dL · · · d2d1 0 β(N ′) = dL · · · d1 0 · 0 d−2 · · ·
1 1 · 0

+ +

Z (N + 1) = dL · · · d2d1 1 β(N ′ + 1) = dL · · · d1 1 · 0 d−2 · · ·

N.B. If d1 = 1, then both Z (N + 1) and β+(N ′ + 1) would end in
11. One has to get rid of this by applying a number of times
011 7→ 100, both for Z and for β. This results in equal words
Z (N + 1) and β+(N ′ + 1).
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Connecting Zeckendorf and base phi: how [5]

Zeckendorf Base golden mean

The case d−1 = 0, d0 = 1

Z (N) = dL · · · d2 0 1 β(N ′) = dL · · · d2 0 1 · 0 d−2 · · ·
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Connecting Zeckendorf and base phi: how [6]

Zeckendorf Base golden mean

The case d−1 = 1⇒ d0 = 0, d1 = 0

Z (N) = dL · · · d2 0 0 β(N ′) = dL · · · d2 0 0 · 1 d−2 · · ·
1 1 · 0

+ +

Z (N + 1) = dL · · · d2 0 1 β(N ′ + 1) = dL · · · d2 0 1 · 1 d−2 · · ·
β(N ′ + 1) = dL · · · d2 1 0 · 0 d−2 · · ·

Z (N + 1) = dL · · · d2 0 1 has been skipped!
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Where are the d−1 = 1?

We have seen: skipping happens exactly at the d−1 = 1.

Now recall:

PROPOSITION Let β(N) = (di (N)) be the base phi expansion
of N. Then

d1d0 · d−1(N) = 10 · 1 never occurs,

d1d0 · d−1(N) = 00 · 1⇔ N = 3bϕnc+n +1 for some natural number n.

With LEMMA GBS this directly yields that

Vskip(N) = 3bϕNc+ 2N + 1.
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Base phi and the Lucas numbers

The Lucas numbers (Ln) = (2, 1, 3, 4, 7, 11, 18, 29, . . . ) :

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

From L2n = ϕ2n + ϕ−2n, and L2n+1 = L2n + L2n−1:

β(L2n) = 102n·02n−11, β(L2n+1) = 1(01)n·(01)n.
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The basis for proving properties of base phi

RECURSIVE STRUCTURE THEOREM

Let the odd and even Lucas intervals be given by

Λ2n+1 = [L2n+1 + 1, L2n+2 − 1], Λ2n+2 = [L2n+2, L2n+3].

(A) For all n ≥ 2 and k = 1, . . . , L2n − 1, we have

In : β(L2n+1 + k) = 1000(10)−1β(L2n−1 + k)(01)−11001,

Kn : β(L2n+1 + L2n−1 + k) = 1010(10)−1β(L2n−1 + k)(01)−10001.

Moreover, for all n ≥ 2 and k = 0, . . . , L2n−1, we have

Jn : β(L2n+1+L2n−2+k) = 10010(10)−1β(L2n−2+k)(01)−1001001.

(B) For all n ≥ 1 and k = 0, . . . , L2n+1 one has

β(L2n+2 + k) = β(L2n+2) + β(k) = 10 · · · 0β(k) 0 · · · 01.



History of RCST

P. Filipponi and E. Hart. The Zeckendorf decomposition of certain
Fibonacci-Lucas products. Fibonacci Quart. 36 (1998).

E. Hart, On using patterns in the beta-expansions to study
Fibonacci-Lucas products, Fibonacci Quart. 36 (1998).

E. Hart and L. Sanchis, On the occurrence of Fn in the Zeckendorf
decomposition of nFn, Fibonacci Quart. 37 (1999).

G.R. Sanchis and L.A. Sanchis, On the frequency of occurrence of
αi in the α-expansions of the positive integers, Fibonacci Quart.
39 (2001).

Repaired:

D.: How to add two natural numbers in base phi, Fibonacci Quart.
59 (2021).

More friendly versions:

D.: The structure of base phi expansions, INTEGERS (2024).
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What about the β−(N) part?

N Z (N) β+(N) β−(N)

1 1 1 ·
2 10 10 ·01
3 100 100 ·01
4 101 101 ·01
5 1000 1000 ·1001
6 1001 1010 ·0001
7 1010 10000 ·0001
8 10000 10001 ·0001
9 10001 10010 ·0101

10 10010 10100 ·0101
11 10100 10101 ·0101
12 10101 100000 ·101001
13 100000 100010 ·001001
14 100001 100100 ·001001
15 100010 100101 ·001001



The return of Zeckendorf!

THEOREM All Zeckendorf words of even length ending in 1
appear as β−(N)-blocks.

Zeckendorf word := word in which 11 does not occur.



Coding the β−(N)

Let Ξn := Λ2n−1 ∪ Λ2n = [L2n−1 + 1, L2n+1].

The Ξn are the intervals where β−(N) has length 2n.

Surprisingly, on each Ξn the β−(N) can be coded by a number
C (β−(N)) such that all numbers {0, 1, . . . ,F2n − 1} appear.

The code is given by C (N) = Z−1
(
β−(N)1−10−1

)
.

Here 0′s as prefix of β−(N) are ignored.

For example: β−(9) 1−10−1 = 0101 1−10−1 = 01, so C (9) = 1.
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The structure of the β−(N)

THEOREM For all natural numbers n, consider the F2n
Zeckendorf words of length 2n occurring as β−(N) in the
β-expansions of the numbers in Ξn. Then these occur in an order
given by a permutation Πβ

2n, which is the orbit of the element
F2n − 1 under addition by the element F2n−2 on the cyclic group
Z/F2nZ.

EXAMPLE For n = 3, we have Ξ3 = Λ5 ∪ Λ6 = {12, 13, . . . , 29},
furthermore F2n = F6 = 8, F2n − 1 = 7, F2n−2 = F4 = 3.

On the next slide we see that Πβ
6 =

(
7 2 5 0 3 6 1 4

)
.

7
+3−→ 2

+3−→ 5
+3−→ 0

+3−→ 3
+3−→ 6

+3−→ 1
+3
−→ 4
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N Λ-int. ·β−(N) C(N)

12 Λ5 ·101001 7
13 Λ5 ·001001 2
14 Λ5 ·001001 2
15 Λ5 ·001001 2
16 Λ5 ·100001 5
17 Λ5 ·000001 0

18 Λ6 ·000001 0
19 Λ6 ·000001 0
20 Λ6 ·010001 3
21 Λ6 ·010001 3
22 Λ6 ·010001 3
23 Λ6 ·100101 6
24 Λ6 ·000101 1
25 Λ6 ·000101 1
26 Λ6 ·000101 1
27 Λ6 ·010101 4
28 Λ6 ·010101 4
29 Λ6 ·010101 4



Stop

THE END


