Poisson genericity in numeration systems with exponentially mixing probabilities

 F da Cesaratto^{*}

Joint work with Nicolás Álvarez, Verónica Becher, and Martín Mereb

? Universidad Nac. de General Sarmiento & CONICET, Argentina

Numeration 2024

Universiteit Utrecht

Poisson generic real numbers

This talk is about numerations systems as sequences of symbols of a finite or countable set Ω , called an alphabet.

An overview

Consider a numeration system associated with an invariant exponentially mixing measure.

For almost all infinite sequences of symbols x , the number of times that the words w of length k which are in the initial segment of x follows a Poisson law as $k \to \infty$.

Numeration systems covered by our result

- Integer bases and continued fractions.
- Fibred systems with an invariant and exponentially mixing measure (including the Ostrowski continued fraction algorithm in the plane).
- Stochastic processes as aperiodic and irreducible Markov chains

Motivation

Yuval Peres and Benjamin Weiss proved the result for integer bases b

Poisson for integer bases

For almost all $x \in [0, 1]$ with respect to the Lebesgue measure, the number of times that words w of length k are in the base b expansion of x follows a Poisson law as $k \to \infty$.

Weiss. Poisson generic points.

Jean-Morlet Chair conference on Diophantine Problems, Determinism and Randomness. Centre International de Rencontres Mathématiques, 23-27 November 2020. Audio-visual resource: doi:10.24350/CIRM.V.19690103.

Alvarez, Becher and Mereb transcribed their proof and related Poisson ´ genericity with the notion randomness from computability theory. Poisson generic sequences. International Mathematics Research Notices, rnac234, 2022

Our initial question: Are the methods of Peres and Weiss amenable to continued fractions?

The symbols in CF expansions are infinitely correlated.

Notations and examples

- Ω alphabet finite or countable
- $x \in \Omega^{\mathbb{N}}$ infinite sequences of symbols in Ω
- $w \in \Omega^k$ words of length k, for each $k \geqslant 1$

Example

 $\Omega = \{0, \ldots, 9\}$

 $x = 414213562373095048801688724209698078569671875376948...$

 $k = 2$, $i = 4$, $x[4, 5] = 21$

The word 69 is three times in the first 50 symbols of x.

Statistics of x with words w of two symbols

Examples

Decimal expansions, Lebesgue measure $\lambda = 1$ $k=6, w \in \Omega^6$. Random x

Initial segment of length 10⁶. In red, the Poisson probability mass function. In blue/green, the histogram of the proportion of words w which appears $0, 1, \ldots$ times

 x is the decimal expansion of a number generated at random

 x is the Champernowne number $x = 123456789101112131415...$ The Champernowne number is not Poisson for $\lambda = 1$ (Peres and Weiss)

The Poisson distribution

Consider the random allocation of N balls in K bins.

E B B B B B B B B B *********

If N is smaller than K , a lot of bins will be empty or with exactly one ball, fewer with exactly two, still fewer with exactly three. . . .

The Poisson distribution

Consider N balls and K bins.

The probability p that a bin is allocated is $1/K$.

The expected proportion of bins with exactly j balls, for $j = 0, 1, 2, \ldots$

$$
\chi(j) = \binom{N}{j} p^j (1-p)^{N-j}.
$$

When N and K go to infinity but $N/K = \lambda$ is a fixed constant

$$
\chi(j)
$$
 converges to $e^{-\lambda} \frac{\lambda^j}{j!}$,

the Poisson probability mass function with parameter λ .

Notation:

Po($λ$): probability mass function of parameter $λ$.

 $X \sim Po(\lambda)$: The r.v. X is distributed according to a Poisson of parameter λ

Continued fractions and beyond

 $Q = N$ Any irrational number in [0, 1] admits a representation of the form: $x = \frac{1}{\sqrt{1 - \frac{1}{x^2}}}$ $a_1 + \frac{a_2 + 1}{a_2 + 1}$ $\frac{1}{1}$ = [a₁, a₂, ...] a_i $\in \mathbb{N}$, i ≥ 1

The natural measure μ associated with CF is the Gauss measure: $d\mu = \frac{dx}{\sqrt{2\pi}}$ $\frac{1}{\ln(2)(1+x)}$.

Integer bases vs continued fractions

And beyond

The Ostrowski map

Given irrationals $x, y \in [0, 1]$ define $T(x, y) = (\{1/x\}, \{y/x\})$,

where $\{t\} := t - |t|$ is the fractional part.

 $\Omega = \{(\mathfrak{a}, \mathfrak{b}) \in \mathbb{Z}^2 : \mathfrak{a} \geqslant 1, 0 \leqslant \mathfrak{b} \leqslant \mathfrak{a}\}\$

T has an invariant and exponentially mixing probability μ (Berthé and Lee, 2024)

Partitions of $[0, 1] \times [0, 1]$

A general setting: sequences and measures

Ω: finite or countable set of symbols

 μ : Borel probability measure on $\Omega^{\mathbb{N}}$.

 μ_k : the Borel probability measure on Ω^k induced by μ , for each $k\in\mathbb{N}.$ Cylinders: $w \in \Omega^k$,

$$
C_k(w)=\{x\in\Omega^{\mathbb{N}}:x[1,k)=w\},\quad \mu_k(w)=\mu(C_k(w))
$$

Length of initial segments: $|\lambda/\mu_k(w)|$, $\mu_k(w) \neq 0$, for each $\lambda > 0$. Variable of interest: $M_k(x, w)(\lambda) = \#\{w \text{ is in } x[1, |\lambda/\mu_k(w)|]\}$

Example with continued fractions $\alpha=\pi-3=[0;7,15,1,292,1,1,\mathbf{1},\mathbf{2},1,3,1,14,2,1]$ \sum_{14} 14 , 1, 2, 2, 2, 2, . . .] $k = 2, w = 12$ $\rm C_2(12)=\left[\frac{1}{1+\frac{1}{2}},\frac{1}{1+\frac{1}{3}}\right]$ $\Big] = [2/3,3/4], \ \mu_2(12) = \int_{2/3}^{3/4} \mu(\mathrm{\mathsf{x}}) \mathrm{d} \mathrm{\mathsf{x}} = 0,0708\dots$ $\lambda = 1$, $\lambda/\mu_2(12) = 14.2$... $M_2(\pi - 3, 12)(1) = 1$

Poisson law for point processes on \mathbb{R}^+

For $x\in\Omega^{\mathbb{N}}$, $\mathfrak{i},\mathfrak{k}\in\mathbb{N}$ and $w\in\Omega^{\mathbb{k}}$, let the indicator function be

$$
I_i(x,w) = \mathbb{1}_{x[i,i+k)=w}
$$

For each $k \in \mathbb{N}$, for each $x \in \Omega^{\mathbb{N}}$, on the space Ω^k with measure μ_k ,

 $\mathsf{M}_\mathsf{k}^\mathsf{x}(w)(\mathsf{S}) = \mathsf{M}_\mathsf{k}(\mathsf{x},w)(\mathsf{S}) = \quad \sum \quad \mathsf{I}_\mathsf{i}(\mathsf{x},w), \quad \text{for any Borel set $\mathsf{S} \subseteq \mathbb{R}^+$}.$ i: iµk(w)∈S

is a integer-valued random measure on \mathbb{R}^+ . The sum runs over $i \in \mathbb{N}$, $i\mu_k(w) \in S$.

Choose w at random and assign to S a nonnegative number

 $S \mapsto M_k^x(w)(S)$

If $S = (0, \lambda)$, the initial segment is $|\lambda/\mu_k(w)|$ as before.

Peres and Weiss' Poisson genericity: Point processes on \mathbb{R}^+

A point process $\boldsymbol{\mathrm{X}}(\cdot)$ on \mathbb{R}^+ is an integer-valued random measure on $\mathbb{R}^+.$

A point process $Po(\cdot)$ on \mathbb{R}^+ is Poisson if

- ightharpoonup for all disjoint Borel sets S_1, \ldots, S_m included in \mathbb{R}^+ , the random variables $Po(S_1), \ldots, Po(S_m)$ are mutually independent;
- ▶ for all bounded Borel sets $S \subseteq \mathbb{R}^+$, the random variable Po(S) has the distribution of a Poisson random variable with parameter $|S|$, the Lebesgue measure of S.

A sequence $X_k(\cdot)_{k\geqslant1}$ **of point processes converges in distribution to a** point process $Po(\cdot)$ if for every Borel set $\mathcal{S} \subseteq \mathbb{R}^+$, the random variables $X_k(S)$ converge in distribution to Po(|S|) as k goes to infinity. We write $X_{\mathbf{k}}(\cdot) \xrightarrow[]{(\mathbf{d})} \mathsf{Po}(\cdot)$

Fact

The sequence $(M_k^x(\cdot))_{k\geqslant 1}$ is a sequence of point processes on $\mathbb{R}^+.$ (w chosen at random in Ω^k .)

Poisson generic numbers: Definition

Definition (Poisson genericity)

We say that $\chi\in\Omega^{\mathbb{N}}$ is Poisson generic $% \mathbb{R}$ if the sequence $\left(M_{\mathbf{k}}^{\chi} (.)\right) _{\mathbf{k}\geqslant\mathbf{l}}$ of point processes on \mathbb{R}^+ converges in distribution to a Poisson point process on \mathbb{R}^+ , as k goes to infinity.

This means that, for each fixed x, for every Borel set $\mathcal{S} \subseteq \mathbb{R}^+$,

$$
M_k^{\mathsf{x}}(S) \xrightarrow{(d)} \mathsf{Po}(|S|), \text{ as } k \to \infty.
$$

or, for each $j \geqslant 0$,

$$
\mu_{k} \left(\left\{ w \in \Omega^{k} : M_{k}^{x}(w)(S) = j \right\} \right) \to e^{-|S|} |S|^{j} / j! \text{ as } k \to \infty.
$$

 $|S|$ is the Lebesgue measure of S.

Our main theorem

Assumptions on the probability measure μ on $\Omega^{\mathbb{N}}.$

- Invariant: $\mu_k(w) = \mu_k({x : x[i, i + k) = w})$ for any i, $k \in \mathbb{N}$ and $w \in \Omega^k$.
- Exponentially mixing (nonindependent "ma non troppo") There exists a $0 < \sigma < 1$ such that for any A, $B \subset \Omega^{\mathbb{N}}$ of positive measure with

A depending on the first i symbols,

B depending on the symbols from position $i, i \geq i + k$,

$$
\left|\frac{\mu(A\cap B)}{\mu(A)\mu(B)}-1\right|=O(\sigma^{j-i-k}).
$$

Our main theorem

For any invariant and exponentially mixing probability measure μ on $\Omega^{\mathbb{N}}$. μ -almost all $x \in \Omega^{\mathbb{N}}$ are Poisson generic.

Warning

The rol of x and w is not symmetric.

For fixed $w \in \Omega^{\mathsf{k}}$, it is feasible to prove the estimate

 $\mathbb{E}_{\mu}[M_{\mathsf{k}}^{\mathsf{w}}(\mathsf{S})] \approx |\mathsf{S}| \quad \text{ as } \mathsf{k} \to \infty$

for any $S \subset \mathbb{R}^+$ which is a finite union of bounded intervals.

For fixed $x \in \Omega^{\mathbb{N}}$, to obtain estimates of

$$
\mathbb{E}_{\mu_k}[M_k^x(S)] \quad \text{ as } k\to\infty
$$

is not immediate.

Adaptation of Peres and Weiss' general strategy

Annealed result. Integrate on $\Omega^{\mathbb{N}} \times \Omega^{\mathbb{k}}$

 $-$ Fix $w \in \Omega^{\mathsf{k}}$ and integrate with respect to $\mathsf{x} \in \Omega^{\mathbb{N}}.$ Only finite union of bounded intervals S.

Use the Chen-Stein method (only for invariant and exponentially mixing probabilities). Bound the total variation distance between $M_{k}^{w}(S)$ and $Po(|S|)$).

- $-$ Integrate with respect to $w\in \Omega^{\text{k}}.$
- Use Kallenberg's criterion of convergence for point processes:

$$
M_k(\cdot) \xrightarrow{(d)} Po(\cdot)
$$
 as $k \to \infty$.

Quenched result (almost all $x\in\Omega^{\mathbb{N}}$, integrate on $\Omega^{\rm k}$)

- With 'high probability", for $x \in \Omega^{\mathbb{N}}$. Use a concentration result $M_k^{\chi}(\cdot) \sim M_k(\cdot) \sim \text{Po}(\cdot)$ as $k \to \infty$.
- $-$ From "high probability" to almost all x: Use Borel Cantelli's lemma Only finite union of bounded intervals S.
- Use Kallenberg's criterion of convergence for point processes and conclude:

Poisson genericity for almost all $x \in \Omega^{\mathbb{N}}$

Sketch of the proof: Annealed

Annealed result. Integrate on $\Omega^{N} \times \Omega^{k}$

 $-$ Fix $w\in \Omega^{\rm k}$ and integrate with respect to $\mathsf{x}\in \Omega^{\rm N}.$ Only finite union of bounded intervals S:

 $\mathbb{E}_{\mu}[M^w_k(S)] \approx |S|$ and $\mathbb{V}_{\mu}[M^w_k(S)] \approx |S| + \text{error}(w)$

Use the Chen-Stein method: invariant and exponentially mixing probabilities

If X is a sum of indicators and its expectation is λ , the total variation distance between X and Po(λ) is controlled by $|\mathbb{V}[X] - \lambda|$.

- $-$ Integrate with respect to $w \in \Omega^{\text{k}}$: $\mathbb{E}_{\mu_k}[\text{error}(w)] \to 0 \text{ as } k \to \infty.$
- Use Kallenberg's criterion of convergence for point processes: From finite union of bounded intervals with rationals points to Borel sets. For every Borel set S,

$$
M_k(S) \xrightarrow{(d)} Po(|S|)
$$
 as $k \to \infty$.

The integration is done with respect to the measure $du \times du_k$.

Sketch of the proof: Quenched result

Use a concentration result

For some prescribed conditions on $\varphi : \Omega^{\mathbb{N}} \to \mathbb{R}$, φ is to close to its mean:

$$
\mu({x:|\phi(x)-\mathbb{E}_{\mu}[\phi]|\geqslant t})\to 0 \quad \text{as } t\to +\infty.
$$

Kontorovich and Ramanan (2007- 2008)

A concentration results holds if φ depends on a finite and fixed number of symbols and one of the following conditions holds

- $-$ Q is finite or
- Ω is countable and φ satisfies the constant weighted Hamming distance property.

Our "functions" $M_k(x, w)(S)$ depend of all symbols of x as $k \to \infty$.

Our concentration

A concentration result holds for $\phi:\Omega^{\mathbb{N}}\mapsto \mathbb{R}^{+}$ if

- φ is a "strong" limit of a sequence of functions $(\varphi_N)_{N\geq 1}$, each φ_N depends on N symbols.
- Each φ_N satisfies a concentration result á la Kontorovich-Ramanan.

Sketch of the proof: Quenched result

Quenched result (almost all $\mathrm{x} \in \Omega^{\mathbb{N}}$, integrate on Ω^{k})

- Use a concentration result: with 'high probability" on $x \in \Omega^{\mathbb{N}}$, $M_k^{\times}(S) \approx \mathbb{E}_{\mu}[M_k(S)] \approx Po(|S|)$ as $k \to \infty$.
- Use Borel Cantelli's lemma: from "high probability" to almost all x . For almost all $x \in \Omega^{\mathbb{N}}$, for every finite union of bounded intervals of rationals endpoints S,

$$
M_k^x(S) \xrightarrow{(d)} Po(|S|) \quad \text{as } k \to \infty.
$$

(Integrate with respect to $w \in \Omega^k$)

– Use Kallenberg's criterion of convergence for point processes. From finite union of bounded intervals of rationals end points to Borel sets.

For almost all $x \in \Omega^{\mathbb{N}}$.

$$
M_k^{\mathsf{x}}(\cdot) \xrightarrow{\mathsf{(d)}} \mathsf{Po}(\cdot) \text{ as } k \to \infty.
$$

Poisson genericity for almost all $x \in \Omega^{\mathbb{N}}$

Return time: the number of visits of a given orbit to a set.

General goal

Consider a discrete dynamical system with an invariant mixing probability and a sequence of sets shrinking to a point (satisfying good properties). The distribution of return times is asymptotically Poisson as the measure of the sets goes to zero.

Early works (1940–1990): Doeblin-Iosifescu (CF), Pitskell (MC) Poisson law of rare events (1990–): Collet, Coelho, Galves, Hirata, Schmitt. Followed by (2000–):Abadi, Lacroix, Paccaut, Vaienti, Zweimüller, etc.

Poisson limit law in Dynamical Systems

Some differences with respect to our work

- \blacktriangleright The role of w and x is reversed.
- \blacktriangleright Many works deal with for $S = (0, \lambda)$.
- \blacktriangleright In many words the exceptional sets (the sets where the limit does not hold) depend on λ .

Dynamical results:

- \blacktriangleright error terms.
- \blacktriangleright periodic orbits (not Poisson).
- \blacktriangleright different families visited sets (not only cylinders).
- \blacktriangleright Many different notions of mixing.

Dynamical system methodology

Generating series, transfer operators, Chen-Stein method, dynamical properties of the measure.

A problem

Almost all numbers are decimal Poisson generic with respect to the Lebesgue measure.

Almost all numbers satisfy Lochs' theorem (1964): Given n decimal digits d_1, d_2, \ldots, d_n of $x \in [0, 1]$, and $L_n(x)$ continued fraction digits (partial quotients)

$$
\frac{\mathsf{L}_\mathfrak{n}(x)}{\mathfrak{n}} \to \frac{6 \ln 10 \ln 2}{\pi^2} \approx 0,97 \quad \text{a.e. x} \quad \text{(Lebesgue measure)}
$$

when $n \to \infty$.

Let's say that x is Lochs typical.

Question: Is Poisson genericity (normality) Lochs' invariant?

If a given number x is Poisson generic in decimal and it is Lochs' typical, is it Poisson generic for continued fractions?

Lochs theorem for positive entropy numeration systems: Dajani and Fieldsteel (2001)

M O D L U X V J Y I P C Z F C C A Q F K G H Y V E M J B K D G I E J G I P L D G Q S X R N T V D H S R Y V Y R G F A M K C H D V Q C H Z T W B H N M X N A B M O D L U X V J Y I P C Z F C C A Q F K G H Y V E M J B K D G I E J G H S G L U K C A Q R T C W Z O I C B K U I U Q O A L T H A N K Y O U L R Z I P L D G Q S A T M O D L U X V J I P C Z F C C A Q F K G H Y V E M J B L D G Q S A T Z O I C B K N A B **F O R Y O U R** K D G I E J G I P H Y V E M J B K D G I E J G H S G L U X R N T V D H S R Y V Y R G F A M K C H D V Q C H Z T W A T T E N T I O N A L T H Y V E M J B K D G I E J G H S G L U M O D L U X V J Y I P C Z F C C A Q F K G H Y V E M J B K D G I E J G I P L D G Q S A T Z O I C B K U I U Q O A L T H Y V E M J B K D G I E J G H S G L U U I U Q O A L T M O D L U X V J Y I P C Z F C C A Q F K G H Y V E M J B K D G I E J G H S G L U K C A Q R T C W L R Z I P L D G Q S A T Z O I C B K U I U Q O A L T B I V D X W M X A T Z O I C B K ...

Some bibliography

Poisson point processes for integer bases.

- ▶ N. Alvarez, V. Becher, and M. Mereb. Poisson generic sequences. International Mathematics Research Notices, rnac234, 2022.
- ▶ B. Weiss. Poisson generic points, 23-27 November 2020. Jean-Morlet Chair conference on Diophantine Problems, Determinism and Randomness. Centre International de Rencontres Math lematiques. Audio-visual resource: doi:10.24350/CIRM.V.19690103.

Poisson Law in dynamical systems: two papers with an historical account:

- ▶ M. Hirata, B. Saussol, and Sandro Vaienti. Statistics of return times: A general framework and new applications. Communications in Mathematical Physics, 206:33â55, 1999
- ▶ M. Iosifescu and C. Kraaikamp. Metrical Theory of Continued Fractions. Mathematics and Its Applications. Springer Netherlands, 2002.
- \triangleright R. Zweimüller. Hitting times and positions in rare events. Annales Henri Lebesgue, 5:1361â1415, 2022.