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Poisson generic real numbers

This talk is about numerations systems as sequences of symbols of a
finite or countable set (), called an alphabet.

An overview

Consider a numeration system associated with an invariant exponentially
mixing measure.

For almost all infinite sequences of symbols x, the number of times that
the words w of length k which are in the initial segment of x follows a
Poisson law as k — oo.

Numeration systems covered by our result

— Integer bases and continued fractions.

— Fibred systems with an invariant and exponentially mixing measure
(including the Ostrowski continued fraction algorithm in the plane).

— Stochastic processes as aperiodic and irreducible Markov chains

2/24



Motivation

Yuval Peres and Benjamin Weiss proved the result for integer bases b

Poisson for integer bases

For almost all x € [0, 1] with respect to the Lebesgue measure, the
number of times that words w of length k are in the base b expansion of
x follows a Poisson law as k — oo.

Weiss. Poisson generic points.

Jean-Morlet Chair conference on Diophantine Problems, Determinism and Randomness. Centre
International de Rencontres Mathématiques, 23-27 November 2020. Audio-visual resource:
doi:10.24350/CIRM.V.19690103.

Alvarez, Becher and Mereb transcribed their proof and related Poisson
genericity with the notion randomness from computability theory.

Poisson generic sequences. International Mathematics Research Notices, rnac234, 2022

Our initial question: Are the methods of Peres and Weiss amenable to
continued fractions?

The symbols in CF expansions are infinitely correlated.
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Notations and examples

Q)  alphabet finite or countable

x € QN infinite sequences of symbols in Q

w € QF  words of length k, for each k > 1
Example
Q={0,...,9}
x = 414213562373095048801688724209698078569671875376948 . . .
k=2 1i=4, x[4,5 =21
The word 69 is three times in the first 50 symbols of x.

Statistics of x with words w of two symbols

j # Words of two symbols | Proportion of words of two

that are j times in x symbols that are j times in
X

0 61 0.61

1 30 0.3

2 8 0.08

3 1 0.01

4 or more 0 0
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Examples

Decimal expansions, Initial segment of length 10°.
Lebesgue measure In red, the Poisson probability mass function.
A=1 In blue/green, the histogram of the proportion of
k=6 we Q°. words w which appears 0, 1, ...times

Random x

Random k = 6

X is the decimal expansion of a
number generated at random

Champernowne

| x is the Champernowne number

x = 123456789101112131415. ..
The Champernowne number is not
Poisson for A = 1 (Peres and Weiss)
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The Poisson distribution

Consider the random allocation of N balls in K bins.
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If N is smaller than K, a lot of bins will be empty or with exactly one
ball, fewer with exactly two, still fewer with exactly three. . ..
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The Poisson distribution

Consider N balls and K bins.
The probability p that a bin is allocated is 1/K.
The expected proportion of bins with exactly j balls, for j =0,1,2,...

. N . .
x() = ().)pl(l—p)N I,
When N and K go to infinity but N/K = A is a fixed constant

)\}\j

X(j) converges to e~ e
j!
the Poisson probability mass function with parameter A.

Notation:
Po(A): probability mass function of parameter A.

X ~Po(A): The r.v. X is distributed according to a Poisson of parameter A
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Continued fractions and beyond

0O=N
Any irrational number in [0, 1] admits a representation of the form:
1
x:—lz[al,ag,...] a,eN, i>1.
at+—
! ar + L

The natural measure p associated with CF is the Gauss measure:

du — dx
ST I

Integer bases vs continued fractions

Integer bases ‘ Continued fractions
Finite alphabet Infinite alphabet
Independence of symbols infinite correlations between symbols
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And beyond

Partitions of [0, 1] x [0, 1]

The Ostrowski map

Given irrationals x,y € [0, 1] define
T(x,y) = {1/x}.{y/x}),
where {t} := t — [t] is the fractional part.

Q={(aq,b)eZ?:a>1,0<b<a}

T has an invariant and exponentially mixing
probability p (Berthé and Lee, 2024)
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A general setting: sequences and measures

Q: finite or countable set of symbols

w: Borel probability measure on QN.

Wi the Borel probability measure on QF induced by p, for each k € N.
Cylinders: w € Qk,

Ce(w) ={x € Q" :x[1,k) =w}, m(w) = pu(Ci(w))
Length of initial segments: |A/u(w)], wx(w) #0, for each A > 0.
Variable of interest: My (x, w)(A) = #{w is in x[1, [N/ (w) |1}

Example with continued fractions
x=n—3=10;7,15,1,292,1,1,1,2,1,3,1,14,2,1 1 ,1,2,2,2,2,...]
o

k=2 w=12,
C2(12) = [hr. 7| = 12/3.3/4), a(12) = [3/3 u(x)dx = 0,0708 ...

A=1 Nip(12) =14.2. ..
M, (m—3,12)(1) = 1
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Poisson law for point processes on R

For x € QN i,k € N and w € QF, let the indicator function be
Li(x, W) = Iy itr)=w
For each k € N, for each x € QF, on the space QO with measure p,

ME(W)(S) = Mi(x,w)(S)= ) L(x,w), forany Borel set S C R".

iiipg (w)eSs

is a integer-valued random measure on R*.

The sum runs over i € N, i (w) € S.

Choose w at random and assign to S a nonnegative number

S = ME(w)(S)

If S = (0, Al, the initial segment is | A/ (w)] as before.
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Peres and Weiss' Poisson genericity: Point processes on R

A point process X(-) on R™ is an integer-valued random measure on R™.

A point process Po(-) on RY is Poisson if

» for all disjoint Borel sets Sy, ..., S, included in RT,
the random variables Po(Sy), ..., Po(S.w) are mutually independent;

» for all bounded Borel sets S C R™, the random variable Po(S) has
the distribution of a Poisson random variable with parameter |S|, the
Lebesgue measure of S.

A sequence Xk(-)k21 of point processes converges in distribution to a
point process Po(+)

if for every Borel set S C R, the random variables

Xk (S) converge in distribution to Po(|S]) as k goes to infinity.

We write X (-) ~2 Pol(.)

Fact

The sequence (M} (-))k>1 is a sequence of point processes on R*.
(w chosen at random in Q)
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Poisson generic numbers: Definition

Definition (Poisson genericity)

We say that x € Q" is Poisson generic if the sequence U\/lﬁ(.))k>1 of
point processes on R" converges in distribution to a Poisson point
process on R, as k goes to infinity.

This means that, for each fixed x, for every Borel set S C R,

ME(S) 12 Po([S)), as k — co.
or, for each j > 0,

e ({w e Q% MEw)(S) =j}) — e SIS /5! as k — .

IS| is the Lebesgue measure of S.
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Our main theorem

Assumptions on the probability measure p on QY.

— Invariant: e (w) = we({x : x[i,1+ k) =w}) for any i,k € N and
w e QF.

— Exponentially mixing (nonindependent “ma non troppo")
There exists a 0 < o < 1 such that for any A, B ¢ QY of positive
measure with
A depending on the first i symbols,
B depending on the symbols from position j, j > i+ Kk,

WANB) | ik
’u(A)u(B) 1‘ Oler =)
Our main theorem

For any invariant and exponentially mixing probability measure p on QY,
u-almost all x € QN are Poisson generic.
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Warning

The rol of x and w is not symmetric.

For fixed w € QF, it is feasible to prove the estimate
E.MZ(S)]~IS] ask— oo
for any S C R™ which is a finite union of bounded intervals.

For fixed x € QN, to obtain estimates of
E. . [Mx(S)] ask— oo

is not immediate.
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Adaptation of Peres and Weiss' general strategy

Annealed result. Integrate on QY x Q

— Fix w € QF and integrate with respect to x € QN. Only finite union
of bounded intervals S.
Use the Chen-Stein method (only for invariant and exponentially mixing
probabilities). Bound the total variation distance between

MY’ (S) and Po(|S])).
— Integrate with respect to w € Q.
— Use Kallenberg's criterion of convergence for point processes:
Mi(-) 12 Po(t)  as k — oo.
Quenched result (almost all x € QY, integrate on Q)

— With ‘high probability”, for x € QY. Use a concentration result
MXE() ~ Mg () ~Po(-) as k — oo.
— From “high probability” to almost all x: Use Borel Cantelli's lemma
Only finite union of bounded intervals S.

— Use Kallenberg's criterion of convergence for point processes and
conclude:

Poisson genericity for almost all x € QY
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Sketch of the proof: Annealed

Annealed result. Integrate on QY x Q

— Fix w € QF and integrate with respect to x € QN. Only finite union

of bounded intervals S:
E. MY (S)] =S| and V. [MY(S)] = IS| + error(w)

Use the Chen-Stein method: invariant and exponentially mixing
probabilities
If X is a sum of indicators and its expectation is A, the total
variation distance between X and Po(A) is controlled by [V[X] — A|.

— Integrate with respect to w € Q:
E,, [error(w)] = 0 ask — oo.

— Use Kallenberg's criterion of convergence for point processes: From
finite union of bounded intervals with rationals points to Borel sets.
For every Borel set S,

M (S) 2L Po(IS))  as k — co.
The integration is done with respect to the measure dp x dp.
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Sketch of the proof: Quenched result

Use a concentration result

For some prescribed conditions on ¢ : QN — R, ¢ is to close to its mean:

n{x:lox) —Eulell > t})) -0 ast— 4oo.

Kontorovich and Ramanan (2007- 2008)

A concentration results holds if ¢ depends on a finite and fixed number
of symbols and one of the following conditions holds

— Q is finite or
— Q) is countable and @ satisfies the constant weighted Hamming
distance property.

Our “functions” My (x, w)(S) depend of all symbols of x as k — oo.
Our concentration
A concentration result holds for ¢ : QN — R* if

— @ is a "strong” limit of a sequence of functions (@N)n>1, €ach @n
depends on N symbols.

— Each @y satisfies a concentration result 4 la Kontorovich-Ramanan.
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Sketch of the proof: Quenched result

Quenched result (almost all x € QY, integrate on QF)
— Use a concentration result: with ‘high probability” on x € QY,
MK (S) = E [Mk(S)] = Po(IS])  as k — oo.

— Use Borel Cantelli's lemma: from “high probability” to almost all x.
For almost all x € QY, for every finite union of bounded intervals of
rationals endpoints S,

ME(S) 12 Po(S])  as k — oo.

(Integrate with respect to w € Q)

— Use Kallenberg's criterion of convergence for point processes.
From finite union of bounded intervals of rationals end points to
Borel sets.

For almost all x € QF,

ME() 2L Po(.) as k — oo.

Poisson genericity for almost all x € QF

19/24



Poisson limit law in Dynamical Systems

Return time: the number of visits of a given orbit to a set.

General goal

Consider a discrete dynamical system with an invariant mixing probability

and a sequence of sets shrinking to a point (satisfying good properties).
The distribution of return times is asymptotically Poisson

as the measure of the sets goes to zero.

Early works (1940-1990): Doeblin-losifescu (CF), Pitskell (MC)
Poisson law of rare events (1990-): Collet, Coelho, Galves, Hirata, Schmitt.
Followed by (2000-):Abadi, Lacroix, Paccaut, Vaienti, Zweimiiller, etc.
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Poisson limit law in Dynamical Systems

Some differences with respect to our work

» The role of w and x is reversed.
» Many works deal with for S = (0, A).

» In many words the exceptional sets (the sets where the limit does
not hold) depend on A .

Dynamical results:
» error terms,
» periodic orbits (not Poisson).
> different families visited sets (not only cylinders).
» Many different notions of mixing.
Dynamical system methodology

Generating series, transfer operators, Chen-Stein method, dynamical
properties of the measure.
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A problem

Almost all numbers are decimal Poisson generic with respect to the
Lebesgue measure.

Almost all numbers satisfy Lochs' theorem (1964):
Given 1 decimal digits d;, dp,...,dn of x € [0,1], and L, (x) continued
fraction digits (partial quotients)

La(x) . 6In10In2
n 72

~ 0,97 a.e.x (Lebesgue measure)
when n — oo.

Let’s say that x is Lochs typical.

Question: Is Poisson genericity (normality) Lochs’ invariant?

If a given number x is Poisson generic in decimal and it is Lochs' typical,
is it Poisson generic for continued fractions?

Lochs theorem for positive entropy numeration systems: Dajani and Fieldsteel
(2001)
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MODLUXVIJYIPCZFCCAQFKGHYVEMIJBKDGI
EJGIPLDGQSXRNTVDHSRYVYRGFAMKCHDYV
QCHZTWBHNMXNABMODLUXVIJYIPCZFCCA
QFKGHYVEMIJBKDGIEJGHSGLUKCAQRTCWZ
OICBKUIUQOALTHANK YOULRZIPLDGQSA
TMODLUXVIJIPCZFCCAQFKGHYVEMIJBLDGAQ
SATZOICBKNABFORYOURKDGIEJGIPHYVE
MIJBKDGIEJGHSGLUXRNTVDHSRYVYRGFAM
KCHDVQCHZTWATTENTIONALTHYVEMIJB
KDGIEJGHSGLUMODLUXVIJYIPCZFCCAQFKG
HYVEMIJBKDGIEJGIPLDGQSATZOICBKUIUQ
OALTHYVEMIJBKDGIEJGHSGLUUIUQOALTM
ODLUXVIJYIPCZFCCAQFKGHYVEMIJBKDGIEJ
GHSGLUKCAQRTCWLRZIPLDGQSATZOICBK
UIUQOALTBIVDXWMXATZOICBK...
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