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Poisson generic real numbers

This talk is about numerations systems as sequences of symbols of a
finite or countable set Ω, called an alphabet.

An overview

Consider a numeration system associated with an invariant exponentially
mixing measure.
For almost all infinite sequences of symbols x, the number of times that
the words w of length k which are in the initial segment of x follows a
Poisson law as k→∞.

Numeration systems covered by our result

– Integer bases and continued fractions.

– Fibred systems with an invariant and exponentially mixing measure
(including the Ostrowski continued fraction algorithm in the plane).

– Stochastic processes as aperiodic and irreducible Markov chains
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Motivation

Yuval Peres and Benjamin Weiss proved the result for integer bases b

Poisson for integer bases

For almost all x ∈ [0, 1] with respect to the Lebesgue measure, the
number of times that words w of length k are in the base b expansion of
x follows a Poisson law as k→∞.

Weiss. Poisson generic points.
Jean-Morlet Chair conference on Diophantine Problems, Determinism and Randomness. Centre

International de Rencontres Mathématiques, 23-27 November 2020. Audio-visual resource:

doi:10.24350/CIRM.V.19690103.

Álvarez, Becher and Mereb transcribed their proof and related Poisson
genericity with the notion randomness from computability theory.
Poisson generic sequences. International Mathematics Research Notices, rnac234, 2022

Our initial question: Are the methods of Peres and Weiss amenable to
continued fractions?

The symbols in CF expansions are infinitely correlated.
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Notations and examples

Ω alphabet finite or countable
x ∈ ΩN infinite sequences of symbols in Ω
w ∈ Ωk words of length k, for each k > 1

Example
Ω = {0, . . . , 9}

x = 414213562373095048801688724209698078569671875376948 . . .

k = 2, i = 4, x[4, 5] = 21

The word 69 is three times in the first 50 symbols of x.

Statistics of x with words w of two symbols

j # Words of two symbols
that are j times in x

Proportion of words of two
symbols that are j times in
x

0 61 0.61
1 30 0.3
2 8 0.08
3 1 0.01
4 or more 0 0
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Examples

Decimal expansions,
Lebesgue measure
λ = 1.
k = 6, w ∈ Ω6.

Initial segment of length 106.
In red, the Poisson probability mass function.
In blue/green, the histogram of the proportion of
words w which appears 0, 1, . . . times

Random x

x is the decimal expansion of a
number generated at random

Champernowne

x is the Champernowne number
x = 123456789101112131415 . . .
The Champernowne number is not
Poisson for λ = 1 (Peres and Weiss)
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The Poisson distribution

Consider the random allocation of N balls in K bins.

If N is smaller than K, a lot of bins will be empty or with exactly one
ball, fewer with exactly two, still fewer with exactly three. . . .
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The Poisson distribution

Consider N balls and K bins.
The probability p that a bin is allocated is 1/K.
The expected proportion of bins with exactly j balls, for j = 0, 1, 2, . . .

χ(j) =

(
N

j

)
pj(1 − p)N−j.

When N and K go to infinity but N/K = λ is a fixed constant

χ(j) converges to e−λ
λj

j!
,

the Poisson probability mass function with parameter λ.

Notation:

Po(λ): probability mass function of parameter λ.

X ∼ Po(λ): The r.v. X is distributed according to a Poisson of parameter λ
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Continued fractions and beyond

Ω = N
Any irrational number in [0, 1] admits a representation of the form:

x =
1

a1 +
1

a2 +
1

...

= [a1,a2, . . . ] ai ∈ N, i > 1.

The natural measure µ associated with CF is the Gauss measure:

dµ =
dx

ln(2)(1 + x)
.

Integer bases vs continued fractions

Integer bases Continued fractions

Finite alphabet Infinite alphabet

Independence of symbols infinite correlations between symbols
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And beyond

The Ostrowski map

Given irrationals x,y ∈ [0, 1] define

T(x,y) = ({1/x} , {y/x}) ,

where {t} := t− btc is the fractional part.

Ω = {(a,b) ∈ Z2 : a > 1, 0 6 b 6 a}

T has an invariant and exponentially mixing
probability µ (Berthé and Lee, 2024)

Partitions of [0, 1]× [0, 1]
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A general setting: sequences and measures

Ω: finite or countable set of symbols

µ: Borel probability measure on ΩN.

µk: the Borel probability measure on Ωk induced by µ, for each k ∈ N.

Cylinders: w ∈ Ωk,

Ck(w) = {x ∈ ΩN : x[1,k) = w}, µk(w) = µ(Ck(w))

Length of initial segments: bλ/µk(w)c, µk(w) 6= 0, for each λ > 0.

Variable of interest: Mk(x,w)(λ) = #{w is in x[1, bλ/µk(w)c]}

Example with continued fractions
x = π− 3 = [0; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1 1︸︷︷︸

14

, 1, 2, 2, 2, 2, . . . ]

k = 2, w = 12,

C2(12) =
[

1
1+ 1

2

, 1
1+ 1

3

]
= [2/3, 3/4], µ2(12) =

∫3/4
2/3 µ(x)dx = 0, 0708 . . .

λ = 1, λ/µ2(12) = 14.2 . . .

M2(π− 3, 12)(1) = 1
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Poisson law for point processes on R+

For x ∈ ΩN, i,k ∈ N and w ∈ Ωk, let the indicator function be

Ii(x,w) = 1x[i,i+k)=w

For each k ∈ N, for each x ∈ ΩN, on the space Ωk with measure µk,

Mx
k(w)(S) =Mk(x,w)(S) =

∑
i: iµk(w)∈S

Ii(x,w), for any Borel set S ⊆ R+.

is a integer-valued random measure on R+.

The sum runs over i ∈ N, iµk(w) ∈ S.

Choose w at random and assign to S a nonnegative number

S 7→Mx
k(w)(S)

If S = (0, λ], the initial segment is bλ/µk(w)c as before.
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Peres and Weiss’ Poisson genericity: Point processes on R+

A point process X(·) on R+ is an integer-valued random measure on R+.

A point process Po(·) on R+ is Poisson if

I for all disjoint Borel sets S1, . . . ,Sm included in R+,
the random variables Po(S1), . . . , Po(Sm) are mutually independent;

I for all bounded Borel sets S ⊆ R+, the random variable Po(S) has
the distribution of a Poisson random variable with parameter |S|, the
Lebesgue measure of S.

A sequence Xk(·)k>1 of point processes converges in distribution to a
point process Po(·)
if for every Borel set S ⊆ R+, the random variables
Xk(S) converge in distribution to Po(|S|) as k goes to infinity.

We write Xk(·)
(d)−−→ Po(·)

Fact

The sequence (Mx
k(·))k>1 is a sequence of point processes on R+.

(w chosen at random in Ωk.)
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Poisson generic numbers: Definition

Definition (Poisson genericity)

We say that x ∈ ΩN is Poisson generic if the sequence (Mx
k(.))k>1 of

point processes on R+ converges in distribution to a Poisson point
process on R+, as k goes to infinity.

This means that, for each fixed x, for every Borel set S ⊆ R+,

Mx
k(S)

(d)−−→ Po(|S|), as k→∞.

or, for each j > 0,

µk
({
w ∈ Ωk : Mx

k(w)(S) = j
})
→ e−|S||S|j/j! as k→∞.

|S| is the Lebesgue measure of S.
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Our main theorem

Assumptions on the probability measure µ on ΩN.

– Invariant: µk(w) = µk({x : x[i, i+ k) = w}) for any i,k ∈ N and
w ∈ Ωk.

– Exponentially mixing (nonindependent “ma non troppo”)
There exists a 0 < σ < 1 such that for any A,B ⊂ ΩN of positive
measure with
A depending on the first i symbols,
B depending on the symbols from position j, j > i+ k,∣∣∣∣ µ(A ∩ B)µ(A)µ(B)

− 1

∣∣∣∣ = O(σj−i−k).
Our main theorem

For any invariant and exponentially mixing probability measure µ on ΩN,
µ-almost all x ∈ ΩN are Poisson generic.
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Warning

The rol of x and w is not symmetric.

For fixed w ∈ Ωk, it is feasible to prove the estimate

Eµ[Mw
k (S)] ≈ |S| as k→∞

for any S ⊂ R+ which is a finite union of bounded intervals.

For fixed x ∈ ΩN, to obtain estimates of

Eµk
[Mx

k(S)] as k→∞
is not immediate.
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Adaptation of Peres and Weiss’ general strategy

Annealed result. Integrate on ΩN ×Ωk

– Fix w ∈ Ωk and integrate with respect to x ∈ ΩN. Only finite union
of bounded intervals S.
Use the Chen-Stein method (only for invariant and exponentially mixing

probabilities). Bound the total variation distance between
Mw
k (S) and Po(|S|)).

– Integrate with respect to w ∈ Ωk.

– Use Kallenberg’s criterion of convergence for point processes:

Mk(·)
(d)−−→ Po(·) as k→∞.

Quenched result (almost all x ∈ ΩN, integrate on Ωk)

– With ‘high probability”, for x ∈ ΩN. Use a concentration result
Mx
k(·) ∼Mk(·) ∼ Po(·) as k→∞.

– From “high probability” to almost all x: Use Borel Cantelli’s lemma
Only finite union of bounded intervals S.

– Use Kallenberg’s criterion of convergence for point processes and
conclude:

Poisson genericity for almost all x ∈ ΩN
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Sketch of the proof: Annealed

Annealed result. Integrate on ΩN ×Ωk

– Fix w ∈ Ωk and integrate with respect to x ∈ ΩN. Only finite union

of bounded intervals S:

Eµ[Mw
k (S)] ≈ |S| and Vµ[Mw

k (S)] ≈ |S|+ error(w)

Use the Chen-Stein method: invariant and exponentially mixing

probabilities

If X is a sum of indicators and its expectation is λ, the total
variation distance between X and Po(λ) is controlled by |V[X] − λ|.

– Integrate with respect to w ∈ Ωk:
Eµk

[error(w)]→ 0 ask→∞.

– Use Kallenberg’s criterion of convergence for point processes: From
finite union of bounded intervals with rationals points to Borel sets.
For every Borel set S,

Mk(S)
(d)−−→ Po(|S|) as k→∞.

The integration is done with respect to the measure dµ× dµk.
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Sketch of the proof: Quenched result

Use a concentration result
For some prescribed conditions on ϕ : ΩN → R, ϕ is to close to its mean:

µ({x : |ϕ(x) − Eµ[ϕ]| > t})→ 0 as t→ +∞.

Kontorovich and Ramanan (2007- 2008)

A concentration results holds if ϕ depends on a finite and fixed number
of symbols and one of the following conditions holds

– Ω is finite or

– Ω is countable and ϕ satisfies the constant weighted Hamming
distance property.

Our “functions” Mk(x,w)(S) depend of all symbols of x as k→∞.

Our concentration

A concentration result holds for ϕ : ΩN 7→ R+ if

– ϕ is a “strong” limit of a sequence of functions (ϕN)N>1, each ϕN
depends on N symbols.

– Each ϕN satisfies a concentration result á la Kontorovich-Ramanan.
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Sketch of the proof: Quenched result

Quenched result (almost all x ∈ ΩN, integrate on Ωk)

– Use a concentration result: with ‘high probability” on x ∈ ΩN,
Mx
k(S) ≈ Eµ[Mk(S)] ≈ Po(|S|) as k→∞.

– Use Borel Cantelli’s lemma: from “high probability” to almost all x.
For almost all x ∈ ΩN, for every finite union of bounded intervals of
rationals endpoints S,

Mx
k(S)

(d)−−→ Po(|S|) as k→∞.

(Integrate with respect to w ∈ Ωk)

– Use Kallenberg’s criterion of convergence for point processes.
From finite union of bounded intervals of rationals end points to
Borel sets.
For almost all x ∈ ΩN,

Mx
k(·)

(d)−−→ Po(·) as k→∞.

Poisson genericity for almost all x ∈ ΩN
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Poisson limit law in Dynamical Systems

Return time: the number of visits of a given orbit to a set.

General goal

Consider a discrete dynamical system with an invariant mixing probability
and a sequence of sets shrinking to a point (satisfying good properties).

The distribution of return times is asymptotically Poisson
as the measure of the sets goes to zero.

Early works (1940–1990): Doeblin-Iosifescu (CF), Pitskell (MC)

Poisson law of rare events (1990–): Collet, Coelho, Galves, Hirata, Schmitt.

Followed by (2000–):Abadi, Lacroix, Paccaut, Vaienti, Zweimüller, etc.
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Poisson limit law in Dynamical Systems

Some differences with respect to our work

I The role of w and x is reversed.

I Many works deal with for S = (0, λ).

I In many words the exceptional sets (the sets where the limit does
not hold) depend on λ .

Dynamical results:

I error terms,

I periodic orbits (not Poisson).

I different families visited sets (not only cylinders).

I Many different notions of mixing.

Dynamical system methodology
Generating series, transfer operators, Chen-Stein method, dynamical
properties of the measure.
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A problem

Almost all numbers are decimal Poisson generic with respect to the
Lebesgue measure.

Almost all numbers satisfy Lochs’ theorem (1964):
Given n decimal digits d1,d2, . . . ,dn of x ∈ [0, 1], and Ln(x) continued
fraction digits (partial quotients)

Ln(x)

n
→ 6 ln 10 ln 2

π2
≈ 0, 97 a.e. x (Lebesgue measure)

when n→∞.

Let’s say that x is Lochs typical.

Question: Is Poisson genericity (normality) Lochs’ invariant?

If a given number x is Poisson generic in decimal and it is Lochs’ typical,
is it Poisson generic for continued fractions?

Lochs theorem for positive entropy numeration systems: Dajani and Fieldsteel

(2001)
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M O D L U X V J Y I P C Z F C C A Q F K G H Y V E M J B K D G I
E J G I P L D G Q S X R N T V D H S R Y V Y R G F A M K C H D V
Q C H Z T W B H N M X N A B M O D L U X V J Y I P C Z F C C A
Q F K G H Y V E M J B K D G I E J G H S G L U K C A Q R T C W Z
O I C B K U I U Q O A L T H A N K Y O U L R Z I P L D G Q S A
T M O D L U X V J I P C Z F C C A Q F K G H Y V E M J B L D G Q
S A T Z O I C B K N A B F O R Y O U R K D G I E J G I P H Y V E
M J B K D G I E J G H S G L U X R N T V D H S R Y V Y R G F A M
K C H D V Q C H Z T W A T T E N T I O N A L T H Y V E M J B
K D G I E J G H S G L U M O D L U X V J Y I P C Z F C C A Q F K G
H Y V E M J B K D G I E J G I P L D G Q S A T Z O I C B K U I U Q
O A L T H Y V E M J B K D G I E J G H S G L U U I U Q O A L T M
O D L U X V J Y I P C Z F C C A Q F K G H Y V E M J B K D G I E J
G H S G L U K C A Q R T C W L R Z I P L D G Q S A T Z O I C B K
U I U Q O A L T B I V D X W M X A T Z O I C B K . . .
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