Optimal Representations of Gaussian and Eisenstein Integers

A. Blažek, E. Pelantová, M. Svobodová

Department of Mathematics, Czech Technical University in Prague

Utrecht, Numeration 2024

Optimal Representations of Gaussian and Eisenstein Integers

A. Blažek, E. Pelantová, M. Svobodová

Department of Mathematics, Czech Technical University in Prague

Utrecht, Numeration $2024 = 2 \cdot 10^3 + 0 \cdot 10^2 + 2 \cdot 10^1 + 4 \cdot 10^0$

Positional number system: base β and digit set $\mathcal D$

Case 1:
$$
\beta = i - 1
$$
, $\mathcal{D} = \{0, \pm 1, \pm i\}$

• Case 2:
$$
\beta = \omega - 1
$$
, $\mathcal{D} = \{0, \pm 1, \pm \omega, \pm \omega^2\}$, $\omega = \exp \frac{2\pi i}{3}$

Positional number system: base β and digit set $\mathcal D$

► Case 1:
$$
\beta = i - 1
$$
, $\mathcal{D} = \{0, \pm 1, \pm i\}$

• Case 2:
$$
\beta = \omega - 1
$$
, $\mathcal{D} = \{0, \pm 1, \pm \omega, \pm \omega^2\}$, $\omega = \exp \frac{2\pi i}{3}$

Both these systems (β, \mathcal{D}) represent all complex numbers:

$$
\left\{\sum_{k
$$

$$
\left\{\sum_{k=0}^{N-1} d_k \beta^k : N \in \mathbb{N}, d_k \in \mathcal{D}\right\} = \left\{\begin{array}{ll} \textbf{Gaussian integers } \mathbb{Z}[i] \text{ in Case 1} \\ \textbf{Eisenstein integers } \mathbb{Z}[\omega] \text{ in Case 2} \end{array}\right.
$$

Positional number system: base β and digit set $\mathcal D$

► Case 1:
$$
\beta = i - 1
$$
, $\mathcal{D} = \{0, \pm 1, \pm i\}$

• Case 2:
$$
\beta = \omega - 1
$$
, $\mathcal{D} = \{0, \pm 1, \pm \omega, \pm \omega^2\}$, $\omega = \exp \frac{2\pi i}{3}$

Both these systems (β, \mathcal{D}) represent all complex numbers:

$$
\left\{\sum_{k
$$

$$
\left\{\sum_{k=0}^{N-1} d_k \beta^k : N \in \mathbb{N}, d_k \in \mathcal{D}\right\} = \left\{\begin{array}{ll} \textbf{Gaussian integers } \mathbb{Z}[i] \text{ in Case 1} \\ \textbf{Eisenstein integers } \mathbb{Z}[\omega] \text{ in Case 2} \end{array}\right.
$$

The equalities are satisfied even with smaller alphabets $\mathcal{A} \subset \mathcal{D}$:

$$
\blacktriangleright \mathcal{A} = \{0, 1\} \text{ for } \beta = i - 1
$$

$$
\blacktriangleright \ \mathcal{A} = \{0, 1, -\omega\} \text{ for } \beta = \omega - 1
$$

but bigger alphabets D have benefits, while staying closed under multiplication, which simplifies multiplication of representations.

Why to use bigger alphabets than necessary

Parallel addition in (β, \mathcal{D}) : constant time, p-local function

▶ minimal digit set size [Frougny, P., S. (2013)]

 $▶ \ \beta = i - 1$: no parallel addition if $\#D < 5$

 $▶$ $\beta = \omega - 1$: no parallel addition if $\#D < 7$

▶ Both system Case 1 and Case 2 do allow parallel addition [Legerský, S. (2019)]

Why to use bigger alphabets than necessary

Parallel addition in (β, \mathcal{D}) : constant time, p-local function

▶ minimal digit set size [Frougny, P., S. (2013)]

▶ $\beta = i - 1$: no parallel addition if $\#D < 5$

 $▶$ $\beta = \omega - 1$: no parallel addition if $\#D < 7$

▶ Both system Case 1 and Case 2 do allow parallel addition [Legerský, S. (2019)]

Non-adjacent form (NAF): small number of non-zero digits in (β, \mathcal{D}) -representation $x = d_{n-1}d_{n-2}\cdots d_1d_0$

- \triangleright w-NAF: any block of length w of consecutive digits contains at most one non-zero digit
	- ▶ Case 1: any Gaussian integer has 3-NAF-representation
	- ▶ Case 2: any Eisenstein integer has 2-NAF-representation
- \triangleright The w-NAF-representation of x is unique, and has the **minimal Hamming weight** among all representations of x , in both Cases 1 and 2 [Heuberger, Krenn (2011)]

Case 1: $\beta = i - 1$ and $\mathcal{D} = \{0, 1, \overline{1}, i, \overline{i}\}$

Examples of NAF vs. general (β, \mathcal{D}) -representations:

- $\times x = 1$: represented e.g. by strings 1, \overline{n} , $\overline{i}010\overline{i}010\overline{i}010\overline{i}010$
- $\times x = 2 + i$: represented e.g. by strings 100 \bar{i} , $i0i$, \bar{i} 1

A representation of x is called **optimal**, if no other representation of x has lower Hamming weight.

Examples of NAF vs. general (β, \mathcal{D}) -representations:

- $\times x = 1$: represented e.g. by strings 1, \overline{n} , $\overline{i}010\overline{i}010\overline{i}010\overline{i}010$
- $\times x = 2 + i$: represented e.g. by strings 100 \bar{i} , $i0i$, \bar{i} 1

A representation of x is called **optimal**, if no other representation of x has lower Hamming weight.

Our goal:

• find a formula to express

 $f(x) =$ number of optimal representations of $x \in \mathbb{Z}[\beta]$

Examples of NAF vs. general (β, \mathcal{D}) -representations:

- $\times x = 1$: represented e.g. by strings 1, \overline{n} , $\overline{i}010\overline{i}010\overline{i}010\overline{i}010$
- $\times x = 2 + i$: represented e.g. by strings 100 \bar{i} , $i0i$, \bar{i} 1

A representation of x is called **optimal**, if no other representation of x has lower Hamming weight.

Our goal:

• find a formula to express

 $f(x) =$ number of optimal representations of $x \in \mathbb{Z}[\beta]$

- for given $N \in \mathbb{N}$:
	- ▶ describe numbers $x \in \mathbb{Z}[\beta]$ having w-NAF-representation with Hamming weight $\leq N$ and with the **maximal value** $f(x)$

Examples of NAF vs. general (β, \mathcal{D}) -representations:

- $\times x = 1$: represented e.g. by strings 1, \overline{n} , $\overline{i}010\overline{i}010\overline{i}010\overline{i}010$
- $\times x = 2 + i$: represented e.g. by strings 100 \bar{i} , $i0i$, \bar{i} 1

A representation of x is called **optimal**, if no other representation of x has lower Hamming weight.

Our goal:

• find a formula to express

 $f(x) =$ number of optimal representations of $x \in \mathbb{Z}[\beta]$

- for given $N \in \mathbb{N}$:
	- ▶ describe numbers $x \in \mathbb{Z}[\beta]$ having w-NAF-representation with Hamming weight $\leq N$ and with the **maximal value** $f(x)$
	- \blacktriangleright determine the average value of $f(x)$ on the set

 $\mathcal{M}_{N} = \{x \in \mathbb{Z}[\beta] : \text{length of } w\text{-NAF-representation of } x \text{ is } \leq N\}$

Case 0: $\beta = 2$ and $\mathcal{D} = \{0, 1, 1\}$

System deeply explored, and questions already responded earlier:

Each $x \in \mathbb{Z}$ has unique 2-NAF-representation and its Hamming weight is minimal among all (β, \mathcal{D}) -representations of x [Reitwiesner (1960)]

Case 0: $\beta = 2$ and $\mathcal{D} = \{0, 1, 1\}$

System deeply explored, and questions already responded earlier:

Each $x \in \mathbb{Z}$ has unique 2-NAF-representation and its Hamming weight is minimal among all (β, \mathcal{D}) -representations of x [Reitwiesner (1960)]

Known results about **maximal and average values of** $f(x)$ [Grabner, Heuberger (2006)]:

▶ If 2-NAF-representation of $x \in \mathbb{Z}$ has at most N non-zero digits, then $f(x) \leq F_{N+1}$, where $(F_N) = F$ ibonacci sequence.

Case 0: $\beta = 2$ and $\mathcal{D} = \{0, 1, 1\}$

System deeply explored, and questions already responded earlier:

Each $x \in \mathbb{Z}$ has unique 2-NAF-representation and its Hamming weight is minimal among all (β, \mathcal{D}) -representations of x [Reitwiesner (1960)]

Known results about maximal and average values of $f(x)$ [Grabner, Heuberger (2006)]:

- ▶ If 2-NAF-representation of $x \in \mathbb{Z}$ has at most N non-zero digits, then $f(x) \leq F_{N+1}$, where $(F_N) = F$ ibonacci sequence.
- ► Let $\lambda \in (2, 3)$ be a root of $t^3 t^2 3t + 1$. There exists a constant $d > 0$ such that the average value of $f(x)$ equals

$$
\frac{1}{\# \mathcal{M}_N} \sum_{x \in \mathcal{M}_N} f(x) = d \left(\frac{\lambda}{2} \right)^N (1 + o(1)),
$$

with $\frac{\lambda}{2} \sim 1,08504$.

Case 1: $\beta = i - 1$ and $\mathcal{D} = \{0, 1, \overline{1}, i, \overline{i}\}$

Step 1: Transducer on 21 vertices

- \triangleright acts on input length $=$ output length of 1 or 3 digits
- ▶ transforms general \mapsto 3-NAF representation of x in (β, \mathcal{D})

▶ outputs on edges: $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 001 \\ 001 \end{bmatrix}$, $\begin{bmatrix} 001 \\ 001 \end{bmatrix}$

Step 1: Transducer on 21 vertices

- \triangleright acts on input length $=$ output length of 1 or 3 digits
- ▶ transforms general \mapsto 3-NAF representation of x in (β , D)

▶ outputs on edges: $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 001 \\ 001 \end{bmatrix}$, $\begin{bmatrix} 001 \\ 001 \end{bmatrix}$, $\begin{bmatrix} 001 \\ 001 \end{bmatrix}$

Step 2: Limiting the transducer only to optimal representations gives graph G on 9 vertices

 \rightarrow each oriented path in G starting and ending in 0 and respecting colours of the 3-NAF representation of x provides **optimal** representation of x

1-1 correspondence

Step 1: Transducer on 21 vertices

- \triangleright acts on input length $=$ output length of 1 or 3 digits
- ▶ transforms general \mapsto 3-NAF representation of x in (β , D)

▶ outputs on edges: $\mid 0 \mid$, $\mid 001 \mid$, $\mid 001 \mid$, $\mid 001 \mid$, $\mid 001 \mid$

Step 2: Limiting the transducer only to optimal representations gives graph G on 9 vertices

 \rightarrow each oriented path in G starting and ending in 0 and respecting colours of the 3-NAF representation of x provides **optimal** representation of x

1-1 correspondence

Case 1: Example - optimal paths in G for $x = 2 + i$

 $x = 2 + i = 001 | 00i$

has 3 optimal (β, \mathcal{D}) -representations:

$$
\blacktriangleright 2 + i = 100\bar{i}
$$

$$
\blacktriangleright 2 + i = i 0 i
$$

$$
\blacktriangleright 2 + i = \bar{i}1
$$

 \rightarrow 3 paths in G from 0 to 0 coloured with (red)(yellow)

Case 1: Example - optimal paths in G for $x = 2 + i$

 $x = 2 + i = | 001 | 00i |$

has 3 optimal (β, \mathcal{D}) -representations:

- \triangleright 2 + $i = 100i$
- \triangleright 2 + $i = 0i$
- \triangleright 2 + $i = 1$
- \rightarrow 3 paths in G from 0 to 0 coloured with (red)(yellow)

Case 1: Number of paths in graph G

Step 3: Incidence matrix $\boldsymbol{A_c} \in \mathbb{N}^{9 \times 9}$ for each colour in graph $\boldsymbol{G:}$

$$
c \in \mathcal{C} := \{ \boxed{0}, \boxed{001}, \boxed{00\overline{1}}, \boxed{00\overline{2}}, \boxed{00\overline{2}} \} \quad \mapsto \quad A_c
$$

 $(A_c)_{q',q}$ = number of
edges from q to q' in
with colour c edges from q to q' in G with colour ϵ

Case 1: Number of paths in graph G

Step 3: Incidence matrix $\boldsymbol{A_c} \in \mathbb{N}^{9 \times 9}$ for each colour in graph $\boldsymbol{G:}$

$$
\mathbf{c}\in\mathcal{C}:=\{\boxed{0},\boxed{001},\boxed{001},\boxed{00\imath},\boxed{00\imath}\} \quad\mapsto\quad A_{\mathbf{c}}
$$

 $(A_c)_{q',q} =$ number of edges from q to q' in G with colour c

If $u_1u_2u_3\cdots u_n\in\mathcal{C}^*$ is the 3-NAF representation of $x\in\mathbb{Z}[\imath]$, then the number of **optimal** representations of x is

$$
f(x) = eA_{u_1}A_{u_2}\cdots A_{u_n}e^{\top}, \text{ where } e = (1,0,0,\ldots,0) \in \mathbb{Z}^9
$$

Function $f: \mathcal{C}^* \mapsto \mathbb{N}$ is a recognizable series, in terminology of [Berstel, Reutenauer (2013)]

Case 1: $\beta = i - 1$ and $\mathcal{D} = \{0, 1, \overline{1}, i, \overline{i}\}$

Step 4: Finding the maximal number of optimal representations: $\max\{eA_{u_1}A_{u_2}\cdots A_{u_n}e^\top:$ Hamming weight of $u_1u_2\cdots u_n$ is $\leq N\}$

Step 4: Finding the **maximal number** of **optimal** representations: $\max\{eA_{u_1}A_{u_2}\cdots A_{u_n}e^\top:$ Hamming weight of $u_1u_2\cdots u_n$ is $\leq N\}$

Theorem

Let $(s_N)_{N\geq 0}$ be the sequence with $s_0=1$, $s_1=\frac{3}{2}$ $\frac{3}{2}$, s₂ = 3, and $s_{N+3} = s_{N+2} + 2s_{N+1} + 2s_N$ for every $N \in \mathbb{N}$.

- \triangleright If the 3-NAF representation of x contains at most N non-zero digits, $N > 2$, then the number of optimal representations $f(x) < s_N$.
- ▶ There exist only 8 Gaussian integers $x \in \mathbb{Z}[i]$, $x \notin \beta \mathbb{Z}[i]$ whose 3-NAF representation contains N non-zero digits, $N > 2$, and which have s_N optimal representations.

Case 1: $\beta = i - 1$ and $\mathcal{D} = \{0, 1, \overline{1}, i, \overline{i}\}$

 $\mathcal{M}_N = \{x \in \mathbb{Z}[i] : \text{length of 3-NAF representation of } x \text{ is } \leq N\}.$

Theorem

Let $\lambda \in (2,3)$ be a root of $t^7 - t^6 - 8t^4 + 3t^3 + t^2 - 2t + 2$. Then the average number of optimal representations of Gaussian integers in M_N equals

$$
\frac{1}{\# \mathcal{M}(N)} \sum_{x \in \mathcal{M}(N)} f(x) \ = \big(\tfrac{\lambda}{2}\big)^{\mathcal{N}}(d+o(1))\,,
$$

with $\frac{\lambda}{2} \sim 1,13674$ and $d \sim 0,76257$.

Case 2: $\beta = \omega - 1$ and $\mathcal{D} = \{0, \pm 1, \pm \omega, \pm \omega^2\}$

2-NAF representations of Eisenstein integers $\mathbb{Z}[\omega]$, $\omega = \exp \frac{2\pi i}{3}$

▶ 2-NAF using 7 digit blocks from set $\sqrt{\left| \begin{array}{c} 0 \\ \end{array} \right|, \left| \begin{array}{c} 0 \\ \end{array} \right|, \left| \begin{array}{c} 0 \\ \omega \end{array} \right|, \left| \begin{array}{c} 0 \\ \omega^2 \end{array} \right|}$ $\overline{01}$, $\overline{0\overline{\omega}}$, $\overline{0\omega^2}$ $\overline{}$ represented by **7 colours in graph** G

▶ incidence matrix $A_c \in \mathbb{N}^{7 \times 7}$ for each colour in G

Case 2: $\beta = \omega - 1$ and $\mathcal{D} = \{0, \pm 1, \pm \omega, \pm \omega^2\}$

2-NAF representations of Eisenstein integers $\mathbb{Z}[\omega]$, $\omega = \exp \frac{2\pi i}{3}$

▶ 2-NAF using 7 digit blocks from set $\sqrt{\left| \begin{array}{c} 0 \\ \end{array} \right|, \left| \begin{array}{c} 0 \\ \end{array} \right|, \left| \begin{array}{c} 0 \\ \omega \end{array} \right|, \left| \begin{array}{c} 0 \\ \omega^2 \end{array} \right|}$ $\overline{01}$, $\overline{0\overline{\omega}}$, $\overline{0\omega^2}$ $\overline{}$ represented by **7 colours in graph** G

▶ incidence matrix $A_c \in \mathbb{N}^{7 \times 7}$ for each colour in G

Theorem Let $s_N = \lfloor \frac{1}{7} \rfloor$ $\frac{1}{7}(6\cdot 2^{\mathsf{N}}+1)\rfloor$, $\mathsf{N}\in\mathbb{N}$ be the sequence given by $s_0 = 1$, $s_1 = 1$, $s_2 = 3$, and $s_{N+3} = s_{N+2} + s_{N+1} + 2s_N + 1$.

- \triangleright 2-NAF representation of x with at most N non-zero digits has the number of optimal representations $f(x) \leq s_N$.
- ▶ For $N > 4$, there are only 12 Eisenstein integers $x \in \mathbb{Z}[\omega]$, $x \notin \beta \mathbb{Z}[\omega]$ with 2-NAF representation containing N non-zero digits, and having s_N optimal representations.

Case 2: $\beta = \omega - 1$ and $\mathcal{D} = \{0, \pm 1, \pm \omega, \pm \omega^2\}$

 $M_N = \{x \in \mathbb{Z}[\omega] : \text{length of 2-NAF representation of } x \text{ is } \leq N\}.$

Theorem

Let λ be the bigger root of $t^2 - 3t - 2$. Then the average number of optimal representations of Eisenstein integers in M_N equals

$$
\frac{1}{\# \mathcal{M}(N)} \sum_{\textstyle \scriptstyle \textbf{\textit{x}} \in \mathcal{M}(N)} f(\textstyle \textbf{\textit{x}}) \ = \bigl(\frac{\textstyle \lambda}{3} \bigr)^N (d + o(1)) \, ,
$$

with $\frac{\lambda}{3} \sim 1,18672$ and $d \sim 0,78144$.

Thanks for your attention