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The chairperson assignment problem

••••••••••••••••••••••••••••••

• We are given k states which form a union.
• Every year a union chairperson has to be selected.
• At any time the accumulated number of chairpersons from each state has to

be proportional to its weight.

How to get in an effective way a fair assignment?



From assignments to symbolic discrepancy

••••••••••••••••••••••••••••••

Take a sequence u = (un)n ∈ {1, · · · , d}N

The frequency αa of the letter a in u is defined as the following limit, if it exists

αa = lim
n→∞

1
n

Card{k, 0 ≤ k ≤ n − 1, uk = a}

The discrepancy of u = (un)n is defined as

∆α(u) = max
a

sup
n∈N

|Card{k, 0 ≤ k ≤ n − 1, uk = a} − nαa|
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How small can the discrepancy be?

Let α = (α1, · · · , αd) be a frequency vector for the letters

The discrepancy of u = (un)n is defined as

∆α(u) = max
a

sup
n∈N

|Card{k, 0 ≤ k ≤ n − 1, uk = a} − nαa|

Theorem [Niederreiter, Meijer, Tijdeman] One has

Dd := sup
α

inf
u

∆α(u) = 1 − 1
2d − 2



Outline

R. Tijdeman has given an algorithmic way to construct fairly distributed
sequences u with ∆α(u) ≤ 1 − 1

2d−2

When d = 2, D2 = 1/2 ; Sturmian sequences

We revisit Tijdeman’s construction in dynamical terms

We provide constructions of fairly distributed sequences



The two-letter case

The sequences having the smallest discrepancy on a two-letter alphabet are
Sturmian sequences.

Sturmian sequences are codings of
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The two-letter case

The sequences having the smallest discrepancy on a two-letter alphabet are
Sturmian sequences.

Sturmian sequences are codings of trajectories of dynamical systems.



A trajectory for a discrete-time dynamical system

We consider orbits/trajectories of points of X under the action of the map
T : X → X

{Tnx | n ∈ N}

x

T (x) T2(x)

T3(x) T4(x)

T5(x)
T6(x)

T7(x)
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And a coding of a trajectory

P1

P2 P3

P4

P5

x

T (x) T2(x)

T3(x) T4(x)

T5(x)
T6(x)

T7(x)

The coding works as follows

un = i if and only if Tn(x) ∈ Pi

u = (un)n = 12355421 · · ·

x 7→ Tx, u 7→ 2355421 · · ·
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Symbolic dynamics

The shift T acts on AZ as T ((un)n) = (un+1)n

A subshift (X ,T ) is a closed shift-invariant subset of AZ

Cylinders [v] = {u ∈ X , u0 · · · u|v|−1 = v} ; Intervals
Factors/Subwords

u = abaababaab aa︸︷︷︸ babaababaab · · ·

aa is a factor, bb is not a factor

The factor complexity pX (n) counts the number of factors of length n



Symbolic models for circle rotations

The sequences having the smallest discrepancy on a two-letter alphabet are
Sturmian sequences

Consider the translation (T,Tα) where Tα : x 7→ x + α mod 1 and the coding map
ν : [0, 1) → {0, 1}, ν(x) = 0 if x ∈ I0, ν(x) = 1 if x ∈ I1

where
I0 = [0, 1 − α), I1 = [1 − α, 1)

The trajectory of x for Tα is coded by u ∈ {0, 1}Z with un = ν(Tn
α (x)) for all n

x•

Tα

I0
1 − α

I1 α



A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer here?



A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer here?

u = 01001010010010100101001 · · ·

Does the word 00 occur in the sequence? Does it have a frequency? Does it have
bounded discrepancy?

I0
1 − α

I1 α

x•

+α

I00

I01

I10

0

1 − 2α

1 − α



A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer here?

I0
1 − α

I1 α

x•

+α

I00

I01

I10

0

1 − 2α

1 − α

The factors of length n of u are in one-to-one correspondence with the n + 1
intervals of T whose end-points are given by

−kα mod 1 for 0 ≤ k ≤ n

By uniform distribution of (kα)k modulo 1, the frequency of a factor w of a
Sturmian sequence is equal to the length of Iw



Bounded remainder sets

I0
1 − α

I1 α

x•

+α

I00

I01

I10

0

1 − 2α

1 − α

Bounded remainder set A measurable set X for which there exists C > 0 s.t. for
all N

|Card{0 ≤ n ≤ N ;Tn
α (0) ∈ X} − Nµ(X)| ≤ C

[Kesten’66] Intervals that are bounded remainder sets are the intervals with length
in Z+ αZ

Letters and even all the factors of Sturmian sequences have bounded discrepancy



Discrepancy for Kronecker sequences

Let α = (α1, . . . , αd) ∈ [0, 1]d with 1, α1, · · · , αd Q-linearly independent. Consider
the Kronecker sequence in [0, 1]d

({nα1}, . . . , {nαd})n

associated with the translation over Td = (R/Z)d

Tα : Td → Td , x 7→ x +α

One has
({nα1}, . . . , {nαd}) = Tn

α(0)



Discrepancy for Kronecker sequences
Consider the minimal translation over Td = (R/Z)d

Tα : Td → Td , x 7→ x +α mod 1, α = (α1, . . . , αd)

Discrepancy Global property

∆N (α) = sup
B box

|Card {0 ≤ n < N ;Tn
α(0) ∈ B} − N · µ(B)|

[Khintchine, Beck] ∆N (α) is a.e. between

(logN )d log logN and (logN )d(log logN )1+ε

Bounded remainder set Local property A measurable set X for which there exists
C > 0 s.t. for all N

|Card{0 ≤ n ≤ N ;Tn
α(0) ∈ X} − Nµ(X)| ≤ C



Bounded remainder sets for toral translations

Bounded remainder set A measurable set X for which there exists C > 0 s.t. for
all N

|Card{0 ≤ n ≤ N ;Tn
α(0) ∈ X} − Nµ(X)| ≤ C

[Kesten’66] d = 1 Intervals that are bounded remainder sets are the intervals with
length in Z+ αZ

[Grepstad-Lev’15, Haynes-Kelly-Koivusalo’17] Any parallelotope in Rd spanned by
vectors v1, · · · , vd belonging to Zα+ Zd is a bounded remainder set for the
minimal translation Tα

Tα : Td → Td , x 7→ x +α mod 1, α = (α1, . . . , αd)



The ubiquitous Fibonacci word

Take the golden ratio α =
√

5+1
2 and the dynamical system

x 7→ x + α modulo 1

α2 = α+ 1 ; self-similarity

The Fibonacci substitution

σ(u) = u with σ : 0 7→ 01, 1 7→ 0

u = σω(1) = 010010100100101 · · ·
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The ubiquitous Fibonacci word

Take the golden ratio α =
√

5+1
2 and the dynamical system

x 7→ x + α modulo 1

α2 = α+ 1 ; self-similarity ; substitution

The Fibonacci substitution

σ(u) = u with σ : 0 7→ 01, 1 7→ 0

u = σω(1) = 010010100100101 · · ·

Theorem The symbolic dynamical system (Xσ,T ) is isomorphic to the geometric
dynamical system (T,T 1+

√
5

2
) where T = R/Z



The ubiquitous Fibonacci word

Take the golden ratio α =
√

5+1
2 and the dynamical system

x 7→ x + α modulo 1

α2 = α+ 1 ; self-similarity

The Fibonacci substitution

σ(u) = u with σ : 0 7→ 01, 1 7→ 0

u = σω(1) = 010010100100101 · · ·

Zeckendorf numeration

n =

k∑
i=1

εFi , εi ∈ {0, 1}, 11 ̸ ∃



Fair assignments in general dimension

The best assignments for d = 2 code the simplest (discrete-time) dynamical
systems.

And now for d ≥ 3?

• Given a frequency vector α = (α1, · · · , αd) ∈ [0, 1]d such that
∑d

i=1 αi = 1,
R.Tijdeman (’80) has given an algorithmic way to construct a sequence u with
∆α(u) ≤ 1 − 1

2d−2 .

Theorem [B.-Carton-Chevallier-Steiner-Yassawi] Let u be a Tijdeman sequence
with a frequency vector α which has rationally independent coordinates. Then, the
sequence u has factor complexity of order nd−1.

The sequence u is a symbolic coding of a translation Tα via a partition of a
fundamental domain of Td−1 into d finite unions of polytopes such that Tα is a
translation by a vector on each of the polytopes.
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Dynamical systems and Tijdeman sequences
The best assignments for d = 2 code the simplest (discrete-time) dynamical
systems.

Given a frequency vector α = (α1, · · · , αd) ∈ [0, 1]d , R. Tijdeman (’80) has given
an algorithmic way to construct sequences u with ∆α(u) ≤ Dd = 1 − 1

2d−2 .

Consider the minimal translation Tα

Tα : Td−1 → Td−1, x 7→ x + (α1, . . . , αd−1) (mod Zd−1).

Theorem [B.-Carton-Chevallier-Steiner-Yassawi] Let u be a Tijdeman sequence
with α = (αi)1≤i≤d having rationally independent coordinates.
• The sequence u has factor complexity of order nd−1.
• The sequence u is a symbolic coding of Tα via a partition of a fundamental
domain of Td−1 into d finite unions of polytopes such that Tα is a translation by a
vector on each of the polytopes.
• The sequence u generates a minimal and uniquely ergodic subshift which has
discrete spectrum.
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A fundamental domain by polygons

Take d = 3, α ≈ (.5, .3, .2), C = C ′ = 3/4

−C ′ C

−C ′

C

−C ′ C

−C ′

C

Tijdeman sequences code orbits of the corresponding exchange of domains.

This yields a factor complexity of order nd−1 = n2



Take d = 3, α ≈ (.5, .45, .05), C = C ′ = 3/4. The atoms of the partition are unions
of polygons.

−C ′ C

−C ′

C

−C ′ C

−C ′

C



What does “order” mean for subshifts?

A subshift (X ,T ) with X ⊂ AZ is simple if

it has few factors pX (n) ≤ Cn for all n
it has bounded discrepancy for letters and factors
it codes a simple dynamical system (a group translation)

What are the relations between these notions of order?

Theorem [D. Creutz, R. Pavlov] If lim sup pX (n)/n < 3/2, then X has measurably
isomorphic to a group translation
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Fairly distributed shifts

How to construct minimal shifts X over the alphabet {1, 2, · · · , d} satisfying the
following conditions

• the letter frequencies in X are given by α = (α1, · · · , αd)

• X has bounded discrepancy for all its factors
• X has linear factor complexity



Fairly distributed shifts

How to construct minimal shifts X over the alphabet {1, 2, · · · , d} satisfying the
following conditions

• the letter frequencies in X are given by α = (α1, · · · , αd)

• X has bounded discrepancy for all its factors
• X has linear factor complexity
• X is a symbolic coding of a toral translation

Let us start from the dynamical system given by the translation

Tα : x 7→ x +α mod 1

How to find a good partition?



How to produce symbolic codings for translations

How to produce fair assignments/ fairly distributed sequences/symbolic codings of
Tα for a given vector of letter frequencies α?

• We apply a multidimensional continued fraction algorithm that generates
nonnegative matrices

α 7→ (Mn)n with α ∈
∩
n

M1 · · ·MnRd
+

• that generates in turn a sequence of substitutions α 7→ (Mn)n 7→ σ = (σn)n

• and thus sequences u = limσ0 · · ·σn(a) ; (Xσ,T ) (S-adic formalism)



Rauzy fractal and the Tribonacci substitution

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

1 1 1
1 0 0
0 1 0


σω(1) = 121312112131212131211213 · · ·

π projection along the expanding
eigenline onto the contracting
plane of the incidence matrix of

Mσ

π(e⃗1)
π(e⃗2)

π(e⃗3)
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Pisot numbers, codings and fractals

X3 = X2 + X + 1

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

Theorem [Rauzy’82] The symbolic dynamical system (Xσ,S) is
measure-theoretically isomorphic to the translation Tβ on the two-dimensional
torus T2

Tβ : T2 → T2, x 7→ x + (1/β, 1/β2)



Beyond the Pisot conjecture

Classical exponentially convergent multidimensional continued fraction algorithms
generate faithful symbolic codings for translations on the torus.

Take your favourite algorithm A.

Theorem [B.-Steiner-Thuswaldner, Pytheas Fogg-Noûs]
For almost every α ∈ [0, 1]d , the translation Tα : x 7→ x +α on the torus Td

admits a symbolic model: the S-adic system provided by the multidimensional
continued fraction algorithm A applied to α is isomorphic in measure to Tα.
Moreover, factors have bounded discrepancy.



And now?

The discrepancy is defined as

∆α(u) = max
a

sup
n∈N

|Card{k, 0 ≤ k ≤ n − 1, uk = a} − nαa|

One has
sup
α

inf
u

∆α(u) = 1 − 1
2d − 2

Now, given α, what about
inf
u

∆α(u)?
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