

Low discrepancy words and dynamical systems

V. Berthé, O. Carton, N. Chevallier, W. Steiner, R. Yassawi

Numeration 2024

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

:

The chairperson assignment problem

- We are given k states which form a union.
- Every year a union chairperson has to be selected.
- At any time the accumulated number of chairpersons from each state has to be proportional to its weight.

How to get in an effective way a fair assignment?

From assignments to symbolic discrepancy

........

Take a sequence $u = (u_n)_n \in \{1, \cdots, d\}^{\mathbb{N}}$

The frequency α_a of the letter a in u is defined as the following limit, if it exists

$$\alpha_a = \lim_{n \to \infty} \frac{1}{n} \operatorname{Card}\{k, 0 \le k \le n - 1, u_k = a\}$$

The discrepancy of $u = (u_n)_n$ is defined as

$$\Delta_{\alpha}(u) = \max_{a} \sup_{n \in \mathbb{N}} |\operatorname{Card}\{k, 0 \le k \le n - 1, u_k = a\} - n\alpha_a$$

How small can the discrepancy be?

Let $\boldsymbol{\alpha} = (\alpha_1, \cdots, \alpha_d)$ be a frequency vector for the letters

The discrepancy of $u = (u_n)_n$ is defined as

$$\Delta_{\alpha}(u) = \max_{a} \sup_{n \in \mathbb{N}} |\operatorname{Card}\{k, 0 \le k \le n - 1, u_k = a\} - n\alpha_a|$$

Theorem [Niederreiter, Meijer, Tijdeman] One has

$$D_d := \sup_{\alpha} \inf_u \Delta_{\alpha}(u) = 1 - \frac{1}{2d-2}$$

Outline

- R. Tijdeman has given an algorithmic way to construct fairly distributed sequences u with $\Delta_{\alpha}(u) \leq 1 \frac{1}{2d-2}$
- When d = 2, $D_2 = 1/2 \sim$ Sturmian sequences
- We revisit Tijdeman's construction in dynamical terms
- We provide constructions of fairly distributed sequences

The sequences having the smallest discrepancy on a two-letter alphabet are Sturmian sequences.

The two-letter case

The sequences having the smallest discrepancy on a two-letter alphabet are Sturmian sequences.

Sturmian sequences are codings of discrete lines.

The two-letter case

The sequences having the smallest discrepancy on a two-letter alphabet are Sturmian sequences.

Sturmian sequences are codings of trajectories of dynamical systems.

We consider orbits/trajectories of points of X under the action of the map $T:X\to X$

 $\{T^n x \mid n \in \mathbb{N}\}$

We consider orbits/trajectories of points of X under the action of the map $T:X\to X$

 $\{T^n x \mid n \in \mathbb{N}\}$

We consider orbits/trajectories of points of X under the action of the map $T:X\to X$

 $\{T^n x \mid n \in \mathbb{N}\}\$

We consider orbits/trajectories of points of X under the action of the map $T:X\to X$

 $\{T^n x \mid n \in \mathbb{N}\}$

And a coding of a trajectory

The coding works as follows

$$u_n = i$$
 if and only if $T^n(x) \in P_i$

$$u = (u_n)_n = 12355421\cdots$$

And a coding of a trajectory

The coding works as follows

$$u_n = i$$
 if and only if $T^n(x) \in P_i$

$$u = (u_n)_n = 12355421\cdots$$

$$x \mapsto Tx, \ u \mapsto 2355421 \cdots$$

Symbolic dynamics

- The shift T acts on $\mathcal{A}^{\mathbb{Z}}$ as $T((u_n)_n) = (u_{n+1})_n$
- A subshift (X, T) is a closed shift-invariant subset of $\mathcal{A}^{\mathbb{Z}}$
- Cylinders $[v] = \{u \in X, u_0 \cdots u_{|v|-1} = v\} \rightsquigarrow$ Intervals
- Factors/Subwords

$$u = abaababaab$$
 aa babaababaab ...

aa is a factor, bb is not a factor

• The factor complexity $p_X(n)$ counts the number of factors of length n

Symbolic models for circle rotations

The sequences having the smallest discrepancy on a two-letter alphabet are Sturmian sequences

Consider the translation (\mathbb{T}, T_{α}) where $T_{\alpha} \colon x \mapsto x + \alpha \mod 1$ and the coding map $\nu \colon [0, 1) \to \{0, 1\}, \quad \nu(x) = 0 \quad \text{if } x \in I_0, \quad \nu(x) = 1 \quad \text{if } x \in I_1$

where

$$I_0 = [0, 1 - \alpha), \ I_1 = [1 - \alpha, 1)$$

The trajectory of x for T_{α} is coded by $u \in \{0,1\}^{\mathbb{Z}}$ with $u_n = \nu(T_{\alpha}^n(x))$ for all n

A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer here?

A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer here?

 $u = 01001010010010100101001 \cdots$

Does the word 00 occur in the sequence? Does it have a frequency? Does it have bounded discrepancy?

A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer here?

The factors of length n of u are in one-to-one correspondence with the n + 1 intervals of \mathbb{T} whose end-points are given by

```
-k\alpha \mod 1 for 0 \le k \le n
```

By uniform distribution of $(k\alpha)_k$ modulo 1, the frequency of a factor w of a Sturmian sequence is equal to the length of I_w

Bounded remainder sets

Bounded remainder set A measurable set X for which there exists C > 0 s.t. for all N

$$|\operatorname{Card}\{0 \le n \le N; T^n_{\alpha}(0) \in X\} - N\mu(X)| \le C$$

[Kesten'66] Intervals that are bounded remainder sets are the intervals with length in $\mathbb{Z} + \alpha \mathbb{Z}$

Letters and even all the factors of Sturmian sequences have bounded discrepancy

Discrepancy for Kronecker sequences

Let $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_d) \in [0, 1]^d$ with $1, \alpha_1, \cdots, \alpha_d$ Q-linearly independent. Consider the Kronecker sequence in $[0, 1]^d$

 $(\{n\alpha_1\},\ldots,\{n\alpha_d\})_n$

associated with the translation over $\mathbb{T}^d = (\mathbb{R}/\mathbb{Z})^d$

$$T_{\boldsymbol{\alpha}} \colon \mathbb{T}^d \to \mathbb{T}^d, \ x \mapsto x + \boldsymbol{\alpha}$$

One has

$$(\{n\alpha_1\},\ldots,\{n\alpha_d\}) = T^n_{\alpha}(0)$$

Discrepancy for Kronecker sequences

Consider the minimal translation over $\mathbb{T}^d = (\mathbb{R}/\mathbb{Z})^d$

$$T_{\boldsymbol{\alpha}} \colon \mathbb{T}^d \to \mathbb{T}^d, \ x \mapsto x + \boldsymbol{\alpha} \mod 1, \quad \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_d)$$

Discrepancy Global property

$$\Delta_N(\boldsymbol{\alpha}) = \sup_{B \text{ box}} |\text{Card} \{ 0 \le n < N; T^n_{\boldsymbol{\alpha}}(0) \in B \} - N \cdot \mu(B) |$$

[Khintchine, Beck] $\Delta_N(\boldsymbol{\alpha})$ is a.e. between

 $(\log N)^d \log \log N$ and $(\log N)^d (\log \log N)^{1+\varepsilon}$

Bounded remainder set Local property A measurable set X for which there exists C>0 s.t. for all N

$$\left|\operatorname{Card}\{0 \le n \le N; T^n_{\boldsymbol{\alpha}}(0) \in X\} - N\mu(X)\right| \le C$$

Bounded remainder sets for toral translations

Bounded remainder set A measurable set X for which there exists C>0 s.t. for all N

$$|\operatorname{Card}\{0 \le n \le N; T^n_{\boldsymbol{\alpha}}(0) \in X\} - N\mu(X)| \le C$$

[Kesten'66] d = 1 Intervals that are bounded remainder sets are the intervals with length in $\mathbb{Z} + \alpha \mathbb{Z}$

[Grepstad-Lev'15, Haynes-Kelly-Koivusalo'17] Any parallelotope in \mathbb{R}^d spanned by vectors v_1, \dots, v_d belonging to $\mathbb{Z}\boldsymbol{\alpha} + \mathbb{Z}^d$ is a bounded remainder set for the minimal translation $T_{\boldsymbol{\alpha}}$

$$T_{\boldsymbol{\alpha}} \colon \mathbb{T}^d \to \mathbb{T}^d, \ x \mapsto x + \boldsymbol{\alpha} \mod 1, \quad \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_d)$$

The ubiquitous Fibonacci word

Take the golden ratio $\alpha = \frac{\sqrt{5}+1}{2}$ and the dynamical system $x \mapsto x + \alpha$ modulo 1 $\alpha^2 = \alpha + 1 \rightsquigarrow$ self-similarity

The ubiquitous Fibonacci word

Take the golden ratio $\alpha = \frac{\sqrt{5}+1}{2}$ and the dynamical system $x \mapsto x + \alpha$ modulo 1 $\alpha^2 = \alpha + 1 \rightsquigarrow$ self-similarity

The ubiquitous Fibonacci word

Take the golden ratio $\alpha = \frac{\sqrt{5}+1}{2}$ and the dynamical system $x\mapsto x+\alpha$ modulo 1

 $\alpha^2 = \alpha + 1 \rightsquigarrow \text{self-similarity} \rightsquigarrow \text{substitution}$

The Fibonacci substitution

$$\sigma(u) = u \text{ with } \sigma: 0 \mapsto 01, \ 1 \mapsto 0$$
$$u = \sigma^{\omega}(1) = 010010100100101 \cdots$$

Theorem The symbolic dynamical system (X_{σ}, T) is isomorphic to the geometric dynamical system $(\mathbb{T}, T_{\frac{1+\sqrt{5}}{2}})$ where $\mathbb{T} = \mathbb{R}/\mathbb{Z}$

The ubiquitous Fibonacci word

Take the golden ratio $\alpha = \frac{\sqrt{5}+1}{2}$ and the dynamical system $x \mapsto x + \alpha$ modulo 1 $\alpha^2 = \alpha + 1 \rightsquigarrow$ self-similarity

The Fibonacci substitution

$$\sigma(u) = u \text{ with } \sigma: 0 \mapsto 01, \ 1 \mapsto 0$$
$$u = \sigma^{\omega}(1) = 010010100100101 \cdots$$

 ${\it Zeckendorf\ numeration}$

$$n = \sum_{i=1}^{k} \varepsilon F_i, \varepsilon_i \in \{0, 1\}, \ 11 \not\exists$$

The best assignments for d = 2 code the simplest (discrete-time) dynamical systems.

The best assignments for d = 2 code the simplest (discrete-time) dynamical systems.

And now for $d \geq 3$?

The best assignments for d = 2 code the simplest (discrete-time) dynamical systems.

And now for $d \geq 3$?

• Given a frequency vector $\boldsymbol{\alpha} = (\alpha_1, \cdots, \alpha_d) \in [0, 1]^d$ such that $\sum_{i=1}^d \alpha_i = 1$, R.Tijdeman ('80) has given an algorithmic way to construct a sequence u with $\Delta_{\boldsymbol{\alpha}}(u) \leq 1 - \frac{1}{2d-2}$.

The best assignments for d = 2 code the simplest (discrete-time) dynamical systems.

And now for $d \ge 3$?

• Given a frequency vector $\boldsymbol{\alpha} = (\alpha_1, \cdots, \alpha_d) \in [0, 1]^d$ such that $\sum_{i=1}^d \alpha_i = 1$, R.Tijdeman ('80) has given an algorithmic way to construct a sequence u with $\Delta_{\boldsymbol{\alpha}}(u) \leq 1 - \frac{1}{2d-2}$.

Theorem [B.-Carton-Chevallier-Steiner-Yassawi] Let u be a Tijdeman sequence with a frequency vector $\boldsymbol{\alpha}$ which has rationally independent coordinates. Then, the sequence u has factor complexity of order n^{d-1} .

The sequence u is a symbolic coding of a translation T_{α} via a partition of a fundamental domain of \mathbb{T}^{d-1} into d finite unions of polytopes such that T_{α} is a translation by a vector on each of the polytopes.

Dynamical systems and Tijdeman sequences

The best assignments for d = 2 code the simplest (discrete-time) dynamical systems.

Dynamical systems and Tijdeman sequences

Given a frequency vector $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_d) \in [0, 1]^d$, R. Tijdeman ('80) has given an algorithmic way to construct sequences u with $\Delta_{\boldsymbol{\alpha}}(u) \leq D_d = 1 - \frac{1}{2d-2}$.

Consider the minimal translation T_{α}

$$T_{\boldsymbol{\alpha}}: \mathbb{T}^{d-1} \to \mathbb{T}^{d-1}, \quad \mathbf{x} \mapsto \mathbf{x} + (\alpha_1, \dots, \alpha_{d-1}) \pmod{\mathbb{Z}^{d-1}}.$$

Theorem [B.-Carton-Chevallier-Steiner-Yassawi] Let u be a Tijdeman sequence with $\boldsymbol{\alpha} = (\alpha_i)_{1 \leq i \leq d}$ having rationally independent coordinates.

• The sequence u has factor complexity of order n^{d-1} .

• The sequence u is a symbolic coding of T_{α} via a partition of a fundamental domain of \mathbb{T}^{d-1} into d finite unions of polytopes such that T_{α} is a translation by a vector on each of the polytopes.

• The sequence u generates a minimal and uniquely ergodic subshift which has discrete spectrum.

A fundamental domain by polygons

Tijdeman sequences code orbits of the corresponding exchange of domains. This yields a factor complexity of order $n^{d-1} = n^2$

Take d = 3, $\alpha \approx (.5, .45, .05)$, C = C' = 3/4. The atoms of the partition are unions of polygons.

What does "order" mean for subshifts?

A subshift (X, T) with $X \subset \mathcal{A}^{\mathbb{Z}}$ is simple if

- it has few factors $p_X(n) \leq Cn$ for all n
- it has bounded discrepancy for letters and factors
- it codes a simple dynamical system (a group translation)

What are the relations between these notions of order?

What does "order" mean for subshifts?

A subshift (X, T) with $X \subset \mathcal{A}^{\mathbb{Z}}$ is simple if

- it has few factors $p_X(n) \leq Cn$ for all n
- it has bounded discrepancy for letters and factors
- it codes a simple dynamical system (a group translation)

What are the relations between these notions of order?

Theorem [D. Creutz, R. Pavlov] If $\limsup p_X(n)/n < 3/2$, then X has measurably isomorphic to a group translation

How to construct minimal shifts X over the alphabet $\{1, 2, \dots, d\}$ satisfying the following conditions

- the letter frequencies in X are given by $\boldsymbol{\alpha} = (\alpha_1, \cdots, \alpha_d)$
- X has bounded discrepancy for all its factors
- X has linear factor complexity

Fairly distributed shifts

How to construct minimal shifts X over the alphabet $\{1, 2, \dots, d\}$ satisfying the following conditions

- the letter frequencies in X are given by $\boldsymbol{\alpha} = (\alpha_1, \cdots, \alpha_d)$
- X has bounded discrepancy for all its factors
- X has linear factor complexity
- X is a symbolic coding of a toral translation

Let us start from the dynamical system given by the translation

 $T_{\boldsymbol{\alpha}}: \mathbf{x} \mapsto \mathbf{x} + \boldsymbol{\alpha} \mod 1$

How to find a good partition?

How to produce symbolic codings for translations

How to produce fair assignments/ fairly distributed sequences/symbolic codings of T_{α} for a given vector of letter frequencies α ?

• We apply a multidimensional continued fraction algorithm that generates nonnegative matrices

$$\boldsymbol{lpha}\mapsto (M_n)_n ext{ with } \quad \boldsymbol{lpha}\in \bigcap_n M_1\cdots M_n\mathbb{R}^d_+$$

• that generates in turn a sequence of substitutions $\boldsymbol{\alpha} \mapsto (M_n)_n \mapsto \boldsymbol{\sigma} = (\sigma_n)_n$

• and thus sequences $u = \lim \sigma_0 \cdots \sigma_n(a) \rightsquigarrow (X_{\sigma}, T)$ (S-adic formalism)

Pisot numbers, codings and fractals

$$X^3 = X^2 + X + 1$$

 $\sigma: 1 \mapsto 12, \ 2 \mapsto 13, \ 3 \mapsto 1$

Theorem [Rauzy'82] The symbolic dynamical system (X_{σ}, S) is measure-theoretically isomorphic to the translation T_{β} on the two-dimensional torus \mathbb{T}^2

$$T_{\beta}: \mathbb{T}^2 \to \mathbb{T}^2, \ x \mapsto x + (1/\beta, 1/\beta^2)$$

Classical exponentially convergent multidimensional continued fraction algorithms generate faithful symbolic codings for translations on the torus.

Take your favourite algorithm A.

Theorem [B.-Steiner-Thuswaldner, Pytheas Fogg-Noûs]

For almost every $\boldsymbol{\alpha} \in [0,1]^d$, the translation $T_{\boldsymbol{\alpha}} : \mathbf{x} \mapsto \mathbf{x} + \boldsymbol{\alpha}$ on the torus \mathbb{T}^d admits a symbolic model: the *S*-adic system provided by the multidimensional continued fraction algorithm *A* applied to $\boldsymbol{\alpha}$ is isomorphic in measure to $T_{\boldsymbol{\alpha}}$. Moreover, factors have bounded discrepancy.

And now?

The discrepancy is defined as

$$\Delta_{\alpha}(u) = \max_{a} \sup_{n \in \mathbb{N}} |\operatorname{Card}\{k, 0 \le k \le n - 1, u_k = a\} - n\alpha_a|$$

One has

$$\sup_{\alpha} \inf_{u} \Delta_{\alpha}(u) = 1 - \frac{1}{2d - 2}$$

Now, given α , what about

 $\inf_{u} \Delta_{\boldsymbol{\alpha}}(u)?$