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The chairperson assignment problem

e We are given k states which form a union.
e Every year a union chairperson has to be selected.

e At any time the accumulated number of chairpersons from each state has to
be proportional to its weight.

How to get in an effective way a fair assignment?



From assignments to symbolic discrepancy

Take a sequence u = (uy)n € {1,---, d}"

The frequency «, of the letter a in v is defined as the following limit, if it exists
i 1
a, = lim —Card{k,0 <k <n-—1,u; = a}
n—oo M
The discrepancy of u = (uy)y is defined as

Aq(u) = max sup|Card{k,0 <k <n—1,u = a} — na,
¢  neN
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How small can the discrepancy be?

Let a = (aq, -+ ,aq) be a frequency vector for the letters

The discrepancy of u = (uy)y is defined as
Aq(u) = max sup|Card{k,0 <k <n—1,u = a} — na,
¢  neN
Theorem [Niederreiter, Meijer, Tijdeman] One has

1
2d -2

Dy :=supinf Ay (u) =1



Outline

R. Tijdeman has given an algorithmic way to construct fairly distributed
sequences u with Ag(u) <1 — Tl_g

When d =2, Dy =1/2 ~ Sturmian sequences

We revisit Tijdeman’s construction in dynamical terms

We provide constructions of fairly distributed sequences
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The two-letter case

The sequences having the smallest discrepancy on a two-letter alphabet are

Sturmian sequences are codings of discrete lines.




The two-letter case

The sequences having the smallest discrepancy on a two-letter alphabet are

Sturmian sequences are codings of trajectories of dynamical systems.




A trajectory for a discrete-time dynamical system

We consider orbits/trajectories of points of X under the action of the map
T:X—>X
{T"z | neN}
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A trajectory for a discrete-time dynamical system

We consider orbits/trajectories of points of X under the action of the map

T:X—-X
{T"z | neN}
T%(x)
_________________ CR T5(x)
|' —————————— ?
'l ----------- ,/
Ce== T4(’L’)




And a coding of a trajectory

The works as follows

u, = 1 if and only if T"(z) € P;

u = (tp)p = 12355421 - - -



And a coding of a trajectory

The works as follows

u, = 1 if and only if T"(z) € P;

u = (tp)p = 12355421 - - -

x— Tzr, uw+> 2355421 - --



Symbolic dynamics

o The shift 7 acts on A% as T((un)n) = (Unt1)n

o A subshift (X, T) is a closed shift-invariant subset of A%
o Cylinders [v] = {u € X, ug--- ujy—y = v} ~ Intervals
e Factors/Subwords

u = abaababaab aa babaababaab - - -
—~~

aa is a factor, bb is not a factor

@ The factor complexity px(n) counts the number of factors of length n



Symbolic models for circle rotations

The sequences having the smallest discrepancy on a two-letter alphabet are

Consider the translation (T, T,) where Ty : z — z + @ mod 1 and the coding map
v:10,1) - {0,1}, v(z)=0 ifzecl, vz)=1 ifzel

where
I(]: [0,1—0[), 11 == [1—0&,1)
The trajectory of z for T, is coded by u € {0,1}¢ with u, = v(T?(z)) for all n

I 11—«
i
Ta&
[1 «



A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer here?



A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer here?
» = 01001010010010100101001 - - -

Does the word 00 occur in the sequence? Does it have a frequency? Does it have
bounded discrepancy?

-« Ioo

+a



A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer here?

I -« Ino

+a

]1 « 110

The factors of length n of u are in one-to-one correspondence with the n -+ 1
intervals of T whose end-points are given by

—ko mod 1 for0<k<n

By uniform distribution of (ka); modulo 1, the frequency of a factor w of a
Sturmian sequence is equal to the length of I,



Bounded remainder sets

I 11—« Ino
T
+a
Il « 110

Bounded remainder set A measurable set X for which there exists C' > 0 s.t. for
all N
|Card{0 < n < N; T2(0) € X} — Nu(X)| < C

[Kesten’66] Intervals that are bounded remainder sets are the intervals with length
in Z + oZ

Letters and even all the factors of Sturmian sequences have bounded discrepancy



Discrepancy for Kronecker sequences

Let a = (aq,...,aq) € [0,1]% with 1,a1,- - ,aq Q-linearly independent. Consider
the Kronecker sequence in [0, 1]¢

({’H,Oél}, R {nad})n
associated with the translation over T = (R/Z)¢
Ta: ’]I'd%']l‘d, T T+«

One has
({na1}, ..., {naq}) = T5(0)



Discrepancy for Kronecker sequences
Consider the minimal translation over T¢ = (R/Z)?
To:T* 5T 2 24+a modl, a= (a1y...,0q)
Discrepancy Global property

An(a) = sup |Card{0 < n < N; T;(0) € B} — N - u(B)|
B box

[Khintchine, Beck] Ay () is a.e. between
(log N)%loglog N and  (log N)%(loglog N)'*¢

Bounded remainder set Local property A measurable set X for which there exists
C > 0s.t. forall N

|Card{0 < n < N; T5(0) € X} = Nu(X)| < C



Bounded remainder sets for toral translations

Bounded remainder set A measurable set X for which there exists C > 0 s.t. for
all N
|Card{0 < n < N;T;(0) € X} — Nu(X)| < C

[Kesten’66] d = 1 Intervals that are bounded remainder sets are the intervals with
length in Z + aZ

[Grepstad-Lev’15, Haynes-Kelly-Koivusalo’17] Any parallelotope in R? spanned by
vectors vy, - - - , vg belonging to Za + Z4 is a bounded remainder set for the
minimal translation T,

To:T? > T¢ 2+ 2+a mod 1, a=(ay,...,aq)



The ubiquitous Fibonacci word

_ /541
= 2

Take the golden ratio a and the dynamical system

T — =+ « modulo 1

l=a+1~
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The ubiquitous Fibonacci word

and the dynamical system

Take the golden ratio a = @

T +— = + o modulo 1

al=a+1~ ~» substitution

The Fibonacci substitution

o(u) =uwitho:0—~01, 1—0
u = 0“(1) = 010010100100101 - - -

Theorem The symbolic dynamical system (X, T') is isomorphic to the geometric
dynamical system (T, T, 5) where T = R/Z
2



The ubiquitous Fibonacci word

Take the golden ratio a = @ and the dynamical system
2z +— =+ « modulo 1

d=a+1~

The Fibonacci substitution

o(u) =uwitho:0—~01, 1—0
u = o“(1) =010010100100101 - - -

Zeckendorf numeration

k
n=>Y cFe €{0,1}, 11 3
=1



Fair assignments in general dimension

The best assignments for d = 2 code the simplest (discrete-time) dynamical
systems.
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e Civen a frequency vector a = (aq,--- ,aq) € [0,1]¢ such that 2?21 a; =1,
R.Tijdeman (’80) has given an algorithmic way to construct a sequence u with

Ag(u) <1— ﬁ'



Fair assignments in general dimension

The best assignments for d = 2 code the simplest (discrete-time) dynamical
systems.

And now for d > 37

e Civen a frequency vector a = (aq,--- ,aq) € [0,1]¢ such that 2?21 a; =1,
R.Tijdeman (’80) has given an algorithmic way to construct a sequence u with
Ag(u) <1-— ﬁ'

Theorem [B.-Carton-Chevallier-Steiner-Yassawi| Let u be a Tijdeman sequence
with a frequency vector a which has rationally independent coordinates. Then, the
sequence u has of order n~1.

The sequence u is a symbolic coding of a translation T, via a partition of a
fundamental domain of T¢~! into d finite unions of polytopes such that T, is a
translation by a vector on each of the polytopes.



Dynamical systems and Tijdeman sequences

The best assignments for d = 2 code the simplest (discrete-time) dynamical
systems.



Dynamical systems and Tijdeman sequences

Given a frequency vector o = (o, - - -, aq) € [0,1]%, R. Tijdeman (’80) has given

an algorithmic way to construct sequences u with Ay (u) < Dg=1— ﬁ

Consider the minimal translation T

To: T 5 T4 x x4 (oq,...,04-1) (mod Z07h).

Theorem [B.-Carton-Chevallier-Steiner-Yassawi| Let u be a Tijdeman sequence
with a = (o;)1<i<q having rationally independent coordinates.

e The sequence u has of order n?1.

e The sequence u is a symbolic coding of T, via a partition of a fundamental
domain of T4~ into d finite unions of polytopes such that T, is a translation by a
vector on each of the polytopes.

e The sequence u generates a minimal and uniquely ergodic subshift which has
discrete spectrum.



A fundamental domain by polygons

Take d =3, a =~ (.5,.3,.2), C = (C"=3/4
Co

N

_b/ ' C _b/

—-C'1 —-C't
Tijdeman sequences code orbits of the corresponding exchange of domains.

-1 _ 2

This yields a factor complexity of order n n



Take d = 3, a = (.5,.45,.05), C' = ' = 3/4. The atoms of the partition are unions
of polygons.
Cr Cr

T



What does “order” mean for subshifts?

A subshift (X, T) with X c A? is simple if
e it has few factors px(n) < Cn for all n

e it has bounded discrepancy for letters and factors

e it codes a simple dynamical system (a group translation)

What are the relations between these notions of order?



What does “order” mean for subshifts?

A subshift (X, T) with X c A? is simple if
e it has few factors px(n) < Cn for all n

e it has bounded discrepancy for letters and factors

e it codes a simple dynamical system (a group translation)
What are the relations between these notions of order?

Theorem [D. Creutz, R. Pavlov| If limsup px(n)/n < 3/2, then X has measurably
isomorphic to a group translation



Fairly distributed shifts

How to construct minimal shifts X over the alphabet {1,2,--- , d} satisfying the
following conditions

e the letter frequencies in X are given by a = (aq,--- ,aq)
e X has bounded discrepancy for all its factors

e X has linear factor complexity



Fairly distributed shifts

How to construct minimal shifts X over the alphabet {1,2,---  d} satisfying the
following conditions

e the letter frequencies in X are given by a = (a1, -+, )
e X has bounded discrepancy for all its factors
e X has linear factor complexity

X is a symbolic coding of a toral translation

Let us start from the dynamical system given by the translation
To:x—x+a modl

How to find a good partition?



How to produce symbolic codings for translations

How to produce fair assignments/ fairly distributed sequences/symbolic codings of
T, for a given vector of letter frequencies a?

e We apply a multidimensional continued fraction algorithm that generates
nonnegative matrices

o (My)n with o € () My -+ MR
n

e that generates in turn a sequence of substitutions a +— (My,),, — o = (o )n

e and thus sequences u = limog - - op(a) ~ (X5, T) (S-adic formalism)



Rauzy fractal and the Tribonacci substitution

o:1+12, 2513, 3> 1

o®(1) = 121312112131212131211213 - - -

7 projection along the expanding
eigenline onto the contracting
plane of the incidence matrix of

m(é3)

>—} m(ér)
()




Rauzy fractal and the Tribonacci substitution

1 11
c:1—12, 2—13, 3—1 1 00
010

o®(1) = 121312112131212131211213 - - -
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Rauzy fractal and the Tribonacci substitution

o:1+12, 2513, 3> 1

o®(1) = 121312112131212131211213 - - -




Rauzy fractal and the Tribonacci substitution

11 1
o:1—12, 2+— 13, 3—1 1 00
0 10

o®(1) = 121312112131212131211213 - - -




Rauzy fractal and the Tribonacci substitution

111
c:1—12, 213,31 (1 0 0
010

o®(1) = 121312112131212131211213 - - -




Pisot numbers, codings and fractals
X=X2+X+1

c:1—12, 2— 13, 3—1

Theorem |[Rauzy’82] The symbolic dynamical system (X, S) is
measure-theoretically isomorphic to the translation T on the two-dimensional
torus T2

Ts:T? = T2 z— 2+ (1/8,1/5%)




Beyond the Pisot conjecture

Classical exponentially convergent multidimensional continued fraction algorithms
generate faithful symbolic codings for translations on the torus.

Take your favourite algorithm A.

Theorem [B.-Steiner-Thuswaldner, Pytheas Fogg-Nofis]

For almost every a € [0,1]%, the translation Ty : X + X 4+ a on the torus T¢
admits a symbolic model: the S-adic system provided by the multidimensional
continued fraction algorithm A applied to « is isomorphic in measure to Ty,.
Moreover, factors have bounded discrepancy.



And now?

The discrepancy is defined as

Aq(u) = max sup|Card{k,0 <k <n—1,u = a} — na,
¢  neN

One has
1

2d-2

supinf Ag(u) =1
o Uu

Now, given o, what about
inf Ag(u)?
U



	Chairman

