

Low discrepancy words and dynamical systems

V. Berthé, O. Carton, N. Chevallier, W. Steiner, R. Yassawi

Numeration 2024

INSTITUT DE RECHERCHE EN IN FORMATIQUE FONDAMENTALE

 \bullet

The chairperson assignment problem

- *•* We are given *k* states which form a union.
- *•* Every year a union chairperson has to be selected.
- *•* At any time the accumulated number of chairpersons from each state has to be proportional to its weight.

How to get in an effective way a fair assignment?

From assignments to symbolic discrepancy

••••••••••••••••••••••••••••••

Take a sequence $u = (u_n)_n \in \{1, \dots, d\}^{\mathbb{N}}$

The frequency α_a of the letter *a* in *u* is defined as the following limit, if it exists

$$
\alpha_a = \lim_{n \to \infty} \frac{1}{n} \text{Card}\{k, 0 \le k \le n - 1, u_k = a\}
$$

The discrepancy of $u = (u_n)_n$ is defined as

$$
\Delta_{\alpha}(u) = \max_{a} \sup_{n \in \mathbb{N}} |\text{Card}\{k, 0 \le k \le n - 1, u_k = a\} - n\alpha_a|
$$

How small can the discrepancy be?

Let $\alpha = (\alpha_1, \dots, \alpha_d)$ be a frequency vector for the letters

The discrepancy of $u = (u_n)_n$ is defined as

$$
\Delta_{\alpha}(u) = \max_{a} \sup_{n \in \mathbb{N}} |\text{Card}\{k, 0 \le k \le n - 1, u_k = a\} - n\alpha_a|
$$

Theorem [Niederreiter, Meijer, Tijdeman] One has

$$
D_d := \sup_{\alpha} \inf_{u} \Delta_{\alpha}(u) = 1 - \frac{1}{2d - 2}
$$

Outline

- R. Tijdeman has given an algorithmic way to construct fairly distributed sequences *u* with $\Delta_{\alpha}(u) \leq 1 - \frac{1}{2d}$ 2*d−*2
- When $d = 2$, $D_2 = 1/2 \sim$ Sturmian sequences
- We revisit Tijdeman's construction in dynamical terms
- We provide constructions of fairly distributed sequences

The two-letter case

The sequences having the smallest discrepancy on a two-letter alphabet are Sturmian sequences.

The two-letter case

The sequences having the smallest discrepancy on a two-letter alphabet are Sturmian sequences.

Sturmian sequences are codings of discrete lines.

The two-letter case

The sequences having the smallest discrepancy on a two-letter alphabet are Sturmian sequences.

Sturmian sequences are codings of trajectories of dynamical systems.

We consider orbits/trajectories of points of *X* under the action of the map $T: X \rightarrow X$

We consider orbits/trajectories of points of *X* under the action of the map $T: X \rightarrow X$

We consider orbits/trajectories of points of *X* under the action of the map $T: X \rightarrow X$

We consider orbits/trajectories of points of *X* under the action of the map $T: X \rightarrow X$

And a coding of a trajectory

The coding works as follows

$$
u_n = i
$$
 if and only if $T^n(x) \in P_i$

$$
u=(u_n)_n=12355421\cdots
$$

And a coding of a trajectory

The coding works as follows

$$
u_n = i
$$
 if and only if $T^n(x) \in P_i$

$$
u=(u_n)_n=12355421\cdots
$$

$$
x \mapsto Tx, \ u \mapsto 2355421\cdots
$$

Symbolic dynamics

- The shift *T* acts on $\mathcal{A}^{\mathbb{Z}}$ as $T((u_n)_n) = (u_{n+1})_n$
- A subshift (X, T) is a closed shift-invariant subset of $\mathcal{A}^{\mathbb{Z}}$
- \bullet Cylinders $[v] = \{u \in X, u_0 \cdots u_{|v|-1} = v\}$ → Intervals
- Factors/Subwords

$$
u = abaababaa b_{aa} babaababaa b \cdots
$$

aa is a factor, *bb* is not a factor

• The factor complexity $p_X(n)$ counts the number of factors of length *n*

Symbolic models for circle rotations

The sequences having the smallest discrepancy on a two-letter alphabet are Sturmian sequences

Consider the translation (\mathbb{T}, T_α) where $T_\alpha: x \mapsto x + \alpha \mod 1$ and the coding map $\nu: [0,1) \to \{0,1\}, \quad \nu(x) = 0 \quad \text{if } x \in I_0, \quad \nu(x) = 1 \quad \text{if } x \in I_1$

where

$$
I_0 = [0, 1 - \alpha), I_1 = [1 - \alpha, 1)
$$

The trajectory of *x* for T_α is coded by $u \in \{0,1\}^{\mathbb{Z}}$ with $u_n = \nu(T_\alpha^n(x))$ for all *n*

A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer here?

A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer here?

 $u = 01001010010010100101001 \cdots$

Does the word 00 occur in the sequence? Does it have a frequency? Does it have bounded discrepancy?

A natural measure of order: factor complexity

What kind of information can the dynamical viewpoint offer here?

The factors of length *n* of *u* are in one-to-one correspondence with the $n+1$ intervals of T whose end-points are given by

```
−kα mod 1 for 0 ≤ k ≤ n
```
By uniform distribution of $(k\alpha)_k$ modulo 1, the frequency of a factor *w* of a Sturmian sequence is equal to the length of *I^w*

Bounded remainder sets

Bounded remainder set A measurable set *X* for which there exists *C >* 0 s.t. for all *N*

$$
|\mathrm{Card}\{0 \le n \le N;\, T_\alpha^n(0) \in X\} - N\mu(X)| \le C
$$

[Kesten'66] Intervals that are bounded remainder sets are the intervals with length in $\mathbb{Z} + \alpha \mathbb{Z}$

Letters and even all the factors of Sturmian sequences have bounded discrepancy

Discrepancy for Kronecker sequences

Let $\alpha = (\alpha_1, \ldots, \alpha_d) \in [0, 1]^d$ with $1, \alpha_1, \cdots, \alpha_d$ Q-linearly independent. Consider the Kronecker sequence in $[0,1]^d$

 $({n\alpha_1}, \ldots, {n\alpha_d})_n$

associated with the translation over $\mathbb{T}^d = (\mathbb{R}/\mathbb{Z})^d$

$$
T_{\alpha} \colon \mathbb{T}^{d} \to \mathbb{T}^{d}, \ x \mapsto x + \alpha
$$

One has

$$
(\{n\alpha_1\},\ldots,\{n\alpha_d\})=T_\alpha^n(0)
$$

Discrepancy for Kronecker sequences

Consider the minimal translation over $\mathbb{T}^d = (\mathbb{R}/\mathbb{Z})^d$

$$
T_{\alpha}: \mathbb{T}^d \to \mathbb{T}^d
$$
, $x \mapsto x + \alpha \mod 1$, $\alpha = (\alpha_1, \ldots, \alpha_d)$

Discrepancy Global property

$$
\Delta_N(\alpha) = \sup_{B \text{ box}} |\text{Card } \{0 \le n < N; T_\alpha^n(0) \in B\} - N \cdot \mu(B)|
$$

[Khintchine, Beck] $\Delta_N(\alpha)$ is a.e. between

$$
(\log N)^d \log \log N \quad \text{ and } \quad (\log N)^d (\log \log N)^{1+\varepsilon}
$$

Bounded remainder set Local property A measurable set *X* for which there exists $C > 0$ s.t. for all *N*

$$
|\mathrm{Card}\{0\leq n\leq N;\, T^n_{\boldsymbol{\alpha}}(0)\in X\}-N\mu(X)|\leq C
$$

Bounded remainder sets for toral translations

Bounded remainder set A measurable set X for which there exists $C > 0$ s.t. for all *N*

$$
|\mathrm{Card}\{0\leq n\leq N;\, T^n_{\boldsymbol\alpha}(0)\in X\}-N\mu(X)|\leq C
$$

[Kesten'66] $d = 1$ Intervals that are bounded remainder sets are the intervals with length in $\mathbb{Z} + \alpha \mathbb{Z}$

[Grepstad-Lev'15, Haynes-Kelly-Koivusalo'17] Any parallelotope in R *d* spanned by vectors v_1, \dots, v_d belonging to $\mathbb{Z}\alpha + \mathbb{Z}^d$ is a bounded remainder set for the minimal translation *T^α*

$$
T_{\alpha}: \mathbb{T}^d \to \mathbb{T}^d
$$
, $x \mapsto x + \alpha \mod 1$, $\alpha = (\alpha_1, \ldots, \alpha_d)$

Take the golden ratio $\alpha = \frac{\sqrt{5}+1}{2}$ $\frac{p+1}{2}$ and the dynamical system $x \mapsto x + \alpha$ modulo 1 $\alpha^2 = \alpha + 1 \rightarrow \text{self-similarity}$

Take the golden ratio $\alpha = \frac{\sqrt{5}+1}{2}$ $\frac{p+1}{2}$ and the dynamical system $x \mapsto x + \alpha$ modulo 1 $\alpha^2 = \alpha + 1 \rightarrow \text{self-similarity}$

Take the golden ratio $\alpha = \frac{\sqrt{5}+1}{2}$ $\frac{p+1}{2}$ and the dynamical system $x \mapsto x + \alpha$ modulo 1

 $\alpha^2 = \alpha + 1 \leadsto \text{self-similarity} \leadsto \text{substitution}$

The Fibonacci substitution

$$
\sigma(u) = u \text{ with } \sigma : 0 \mapsto 01, \ 1 \mapsto 0
$$

$$
u = \sigma^{\omega}(1) = 010010100100101 \cdots
$$

Theorem The symbolic dynamical system (X_{σ}, T) is isomorphic to the geometric dynamical system $(\mathbb{T}, T_{\frac{1+\sqrt{5}}{2}})$ where $\mathbb{T} = \mathbb{R}/\mathbb{Z}$

Take the golden ratio $\alpha = \frac{\sqrt{5}+1}{2}$ $\frac{p+1}{2}$ and the dynamical system $x \mapsto x + \alpha$ modulo 1 $\alpha^2 = \alpha + 1 \rightarrow \text{self-similarity}$

The Fibonacci substitution

 $\sigma(u) = u$ with $\sigma: 0 \mapsto 01, 1 \mapsto 0$ $u = \sigma^{\omega}(1) = 010010100100101 \cdots$

Zeckendorf numeration

$$
n = \sum_{i=1}^{k} \varepsilon F_i, \varepsilon_i \in \{0, 1\}, \ 11 \not\exists
$$

The best assignments for $d = 2$ code the simplest (discrete-time) dynamical systems.

The best assignments for $d = 2$ code the simplest (discrete-time) dynamical systems.

And now for $d \geq 3$?

The best assignments for $d = 2$ code the simplest (discrete-time) dynamical systems.

And now for $d \geq 3$?

• Given a frequency vector $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_d) \in [0, 1]^d$ such that $\sum_{i=1}^d \alpha_i = 1$, R.Tijdeman ('80) has given an algorithmic way to construct a sequence *u* with $\Delta_{\boldsymbol{\alpha}}(u) \leq 1 - \frac{1}{2d}$ $\frac{1}{2d-2}$.

The best assignments for $d = 2$ code the simplest (discrete-time) dynamical systems.

And now for $d \geq 3$?

• Given a frequency vector $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_d) \in [0, 1]^d$ such that $\sum_{i=1}^d \alpha_i = 1$, R.Tijdeman ('80) has given an algorithmic way to construct a sequence *u* with $\Delta_{\boldsymbol{\alpha}}(u) \leq 1 - \frac{1}{2d}$ $\frac{1}{2d-2}$.

Theorem [B.-Carton-Chevallier-Steiner-Yassawi] Let *u* be a Tijdeman sequence with a frequency vector α which has rationally independent coordinates. Then, the sequence *u* has factor complexity of order *n d−*1 .

The sequence *u* is a symbolic coding of a translation T_{α} via a partition of a fundamental domain of \mathbb{T}^{d-1} into *d* finite unions of polytopes such that T_{α} is a translation by a vector on each of the polytopes.

Dynamical systems and Tijdeman sequences

The best assignments for $d = 2$ code the simplest (discrete-time) dynamical systems.

Dynamical systems and Tijdeman sequences

Given a frequency vector $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_d) \in [0, 1]^d$, R. Tijdeman ('80) has given an algorithmic way to construct sequences *u* with $\Delta_{\alpha}(u) \le D_d = 1 - \frac{1}{2d}$ $rac{1}{2d-2}$.

Consider the minimal translation *T^α*

$$
T_{\alpha}: \mathbb{T}^{d-1} \to \mathbb{T}^{d-1}, \quad \mathbf{x} \mapsto \mathbf{x} + (\alpha_1, \dots, \alpha_{d-1}) \pmod{\mathbb{Z}^{d-1}}.
$$

Theorem [B.-Carton-Chevallier-Steiner-Yassawi] Let *u* be a Tijdeman sequence with $\alpha = (\alpha_i)_{1 \leq i \leq d}$ having rationally independent coordinates.

• The sequence *u* has factor complexity of order *n d−*1 .

• The sequence *u* is a symbolic coding of *T^α* via a partition of a fundamental domain of \mathbb{T}^{d-1} into *d* finite unions of polytopes such that T_{α} is a translation by a vector on each of the polytopes.

• The sequence *u* generates a minimal and uniquely ergodic subshift which has discrete spectrum.

A fundamental domain by polygons

Tijdeman sequences code orbits of the corresponding exchange of domains. This yields a factor complexity of order $n^{d-1} = n^2$

Take $d = 3$, $\alpha \approx (0.5, 0.45, 0.05)$, $C = C' = 3/4$. The atoms of the partition are unions of polygons.

What does "order" mean for subshifts?

A subshift (X, T) with $X \subset \mathcal{A}^{\mathbb{Z}}$ is simple if

- it has few factors $p_X(n) \leq C_n$ for all *n*
- it has bounded discrepancy for letters and factors
- it codes a simple dynamical system (a group translation)

What are the relations between these notions of order?

What does "order" mean for subshifts?

A subshift (X, T) with $X \subset \mathcal{A}^{\mathbb{Z}}$ is simple if

- it has few factors $p_X(n) \leq C_n$ for all *n*
- it has bounded discrepancy for letters and factors
- it codes a simple dynamical system (a group translation)

What are the relations between these notions of order?

Theorem [D. Creutz, R. Pavlov] If $\limsup p_X(n)/n < 3/2$, then *X* has measurably isomorphic to a group translation

How to construct minimal shifts *X* over the alphabet $\{1, 2, \cdots, d\}$ satisfying the following conditions

- the letter frequencies in *X* are given by $\alpha = (\alpha_1, \dots, \alpha_d)$
- *X* has bounded discrepancy for all its factors
- *X* has linear factor complexity

Fairly distributed shifts

How to construct minimal shifts *X* over the alphabet $\{1, 2, \cdots, d\}$ satisfying the following conditions

- the letter frequencies in *X* are given by $\alpha = (\alpha_1, \dots, \alpha_d)$
- *X* has bounded discrepancy for all its factors
- *X* has linear factor complexity
- *• X* is a symbolic coding of a toral translation

Let us start from the dynamical system given by the translation

 T_{α} : $\mathbf{x} \mapsto \mathbf{x} + \alpha \mod 1$

How to find a good partition?

How to produce symbolic codings for translations

How to produce fair assignments/ fairly distributed sequences/symbolic codings of *T*^{*α*} for a given vector of letter frequencies $α$?

• We apply a multidimensional continued fraction algorithm that generates nonnegative matrices

$$
\boldsymbol{\alpha} \mapsto (M_n)_n \text{ with } \boldsymbol{\alpha} \in \bigcap_n M_1 \cdots M_n \mathbb{R}^d_+
$$

• that generates in turn a sequence of substitutions $\alpha \mapsto (M_n)_n \mapsto \sigma = (\sigma_n)_n$

• and thus sequences $u = \lim \sigma_0 \cdots \sigma_n(a) \sim (X_{\sigma}, T)$ (*S*-adic formalism)

$$
\sigma: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1 \qquad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}
$$

$$
\sigma^{\omega}(1) = 121312112131212131211213...
$$

$$
\pi \text{ projection along the expanding eigenline onto the contracting plane of the incidence matrix of}
$$

$$
\pi(\vec{e_3})
$$

$$
\sigma: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1 \qquad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}
$$

$$
\sigma^{\omega}(1) = 121312112131212131211213\cdots
$$

$$
\pi(\vec{e_3})
$$

$$
\pi(\vec{e_2})
$$

$$
\pi(\vec{e_1})
$$

Pisot numbers, codings and fractals

$$
X^3 = X^2 + X + 1
$$

 $\sigma: 1 \mapsto 12$, $2 \mapsto 13$, $3 \mapsto 1$

Theorem [Rauzy'82] The symbolic dynamical system (X_{σ}, S) is measure-theoretically isomorphic to the translation T_β on the two-dimensional torus \mathbb{T}^2

$$
T_{\beta}: \mathbb{T}^2 \to \mathbb{T}^2, \ x \mapsto x + (1/\beta, 1/\beta^2)
$$

Beyond the Pisot conjecture

Classical exponentially convergent multidimensional continued fraction algorithms generate faithful symbolic codings for translations on the torus.

Take your favourite algorithm *A*.

Theorem [B.-Steiner-Thuswaldner, Pytheas Fogg-Noûs]

For almost every $\alpha \in [0,1]^d$, the translation $T_{\alpha} : \mathbf{x} \mapsto \mathbf{x} + \alpha$ on the torus \mathbb{T}^d admits a symbolic model: the *S*-adic system provided by the multidimensional continued fraction algorithm *A* applied to α is isomorphic in measure to T_{α} . Moreover, factors have bounded discrepancy.

And now?

The discrepancy is defined as

$$
\Delta_{\alpha}(u) = \max_{a} \sup_{n \in \mathbb{N}} |\text{Card}\{k, 0 \le k \le n - 1, u_k = a\} - n\alpha_a|
$$

One has

$$
\sup_{\alpha} \inf_{u} \Delta_{\alpha}(u) = 1 - \frac{1}{2d - 2}
$$

Now, given α , what about

 $\inf_{u} \Delta_{\alpha}(u)$?